題目列表(包括答案和解析)
(Ⅰ)求橢圓的方程;
(Ⅱ)若點P為l上的動點,求∠F1PF2最大值.
(05年浙江卷文)(14分)
如圖,已知橢圓的中心在坐標(biāo)原點,焦點F1,F(xiàn)2在x軸上,長軸A1A2的長為4,左準(zhǔn)線l與x軸的交點為M,|MA1|∶|A1F1|=2∶1.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點P為l上的動點,求∠F1PF2最大值.
設(shè)、
分別是橢圓
的左、右焦點.
(1).若是該橢圓上的一個動點,求
的最大值和最小值; w.w
(2).設(shè)過定點的直線
與橢圓交于不同的兩點
、
,且∠
為銳角(其中
為坐標(biāo)原點),求直線
的斜率
的取值范圍.
(本小題滿分12分)
設(shè)、
分別是橢圓
的左、右焦點.
(Ⅰ)若是該橢圓上的一個動點,求
·
的最大值和最小值;
(Ⅱ)設(shè)過定點的直線
與橢圓交于不同的兩點
、
,且∠
為銳角(其中
為坐標(biāo)原點),求直線
的斜率
的取值范圍.
題號
1
2
3
4
5
6
7
8
9
10
答案
D
C
D
B
C
A
C
B
D
B
11、2;12、;13、
;14、
;15、
;16、
17、解:(1)
, (6分)
∴的最小正周期為
. (8分)
(2)∵,∴
,
故. (12分)
18、解:(1)表示取出的三個球中數(shù)字最大者為3.
①三次取球均出現(xiàn)最大數(shù)字為3的概率
②三取取球中有2次出現(xiàn)最大數(shù)字3的概率
③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率
∴. ……………………………………………………6分
(2)在時, 利用(1)的原理可知:
,(
=1,2,3,4)
1
2
3
4
的概率分布為:
=1×+2×+3×+4× = .………………………………………………12分
19、解:(Ⅰ)作,垂足為
,連結(jié)
,由側(cè)面
底面
,得
底面
.
因為,所以
,
又,故
為等腰直角三角形,
,
由三垂線定理,得.
(Ⅱ)由(Ⅰ)知
,依題設(shè)
,
故,由
,
,
,得
,
.
的面積
.
連結(jié),得
的面積
設(shè)到平面
的距離為
,由于
,得
,
解得.
設(shè)與平面
所成角為
,則
.
所以,直線與平面
所成的我為
.
20、解:(I)由題意知,因此
,從而
.
又對求導(dǎo)得
.
由題意,因此
,解得
.
(II)由(I)知(
),令
,解得
.
當(dāng)時,
,此時
為減函數(shù);
當(dāng)時,
,此時
為增函數(shù).
因此的單調(diào)遞減區(qū)間為
,而
的單調(diào)遞增區(qū)間為
.
(III)由(II)知,在
處取得極小值
,此極小值也是最小值,要使
(
)恒成立,只需
.
即,從而
,
解得或
.
所以的取值范圍為
.
21、解:(Ⅰ)解法一:易知
所以,設(shè)
,則
因為,故當(dāng)
,即點
為橢圓短軸端點時,
有最小值
當(dāng),即點
為橢圓長軸端點時,
有最大值
解法二:易知,所以
,設(shè)
,則
(以下同解法一)
(Ⅱ)顯然直線不滿足題設(shè)條件,可設(shè)直線
,
聯(lián)立,消去
,整理得:
∴
由得:
或
又
∴
又
∵,即
∴
故由①、②得或
22、(I)解:方程的兩個根為
,
,
當(dāng)時,
,
所以;
當(dāng)時,
,
,
所以;
當(dāng)時,
,
,
所以時;
當(dāng)時,
,
,
所以.
(II)解:
.
(III)證明:,
所以,
.
當(dāng)時,
,
,
同時,
.
綜上,當(dāng)時,
.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com