題目列表(包括答案和解析)
(本題滿分13分)已知橢圓的左焦點(diǎn)
的坐標(biāo)為
,
是它的右焦點(diǎn),點(diǎn)
是橢圓
上一點(diǎn),
的周長等于
.
(1)求橢圓的方程;
(2)過定點(diǎn)作直線
與橢圓
交于不同的兩點(diǎn)
,且
(其中
為坐標(biāo)原點(diǎn)),求直線
的方程.
(本小題滿分15分)已知橢圓的離心率為
,過
的直線與原點(diǎn)的距離為
(1)求橢圓的方程;
(2)已知定點(diǎn),直線
與橢圓交于不同兩點(diǎn)C,D,試問:對(duì)任意的
,是否都存在實(shí)數(shù)
,使得以線段CD為直徑的圓過點(diǎn)E?證明你的結(jié)論
已知橢圓方程為
,左、右焦點(diǎn)分別是
,若橢圓
上的點(diǎn)
到
的距離和等于
.
(Ⅰ)寫出橢圓的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)是橢圓
的動(dòng)點(diǎn),求線段
中點(diǎn)
的軌跡方程;
(Ⅲ)直線過定點(diǎn)
,且與橢圓
交于不同的兩點(diǎn)
,若
為銳角(
為坐標(biāo)原點(diǎn)),求直線
的斜率
的取值范圍.
x2 |
a2 |
y2 |
b2 |
PF1 |
PF2 |
| ||
2 |
PF1 |
PF2 |
5 |
4 |
(本題12分)
設(shè)、
分別是橢圓
的左、右焦點(diǎn),
是該橢圓上的一個(gè)動(dòng)點(diǎn),
為坐標(biāo)原點(diǎn).
(1)求的取值范圍;
(2)設(shè)過定點(diǎn)的直線
與橢圓交于不同的兩點(diǎn)M、N,且∠
為銳角,求直線
的斜率
的取值范圍.
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
D
C
D
B
C
A
C
B
D
B
11、2;12、;13、
;14、
;15、
;16、
17、解:(1)
, (6分)
∴的最小正周期為
. (8分)
(2)∵,∴
,
故. (12分)
18、解:(1)表示取出的三個(gè)球中數(shù)字最大者為3.
①三次取球均出現(xiàn)最大數(shù)字為3的概率
②三取取球中有2次出現(xiàn)最大數(shù)字3的概率
③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率
∴. ……………………………………………………6分
(2)在時(shí), 利用(1)的原理可知:
,(
=1,2,3,4)
1
2
3
4
的概率分布為:
=1×+2×+3×+4× = .………………………………………………12分
19、解:(Ⅰ)作,垂足為
,連結(jié)
,由側(cè)面
底面
,得
底面
.
因?yàn)?sub>,所以
,
又,故
為等腰直角三角形,
,
由三垂線定理,得.
(Ⅱ)由(Ⅰ)知
,依題設(shè)
,
故,由
,
,
,得
,
.
的面積
.
連結(jié),得
的面積
設(shè)到平面
的距離為
,由于
,得
,
解得.
設(shè)與平面
所成角為
,則
.
所以,直線與平面
所成的我為
.
20、解:(I)由題意知,因此
,從而
.
又對(duì)求導(dǎo)得
.
由題意,因此
,解得
.
(II)由(I)知(
),令
,解得
.
當(dāng)時(shí),
,此時(shí)
為減函數(shù);
當(dāng)時(shí),
,此時(shí)
為增函數(shù).
因此的單調(diào)遞減區(qū)間為
,而
的單調(diào)遞增區(qū)間為
.
(III)由(II)知,在
處取得極小值
,此極小值也是最小值,要使
(
)恒成立,只需
.
即,從而
,
解得或
.
所以的取值范圍為
.
21、解:(Ⅰ)解法一:易知
所以,設(shè)
,則
因?yàn)?sub>,故當(dāng)
,即點(diǎn)
為橢圓短軸端點(diǎn)時(shí),
有最小值
當(dāng),即點(diǎn)
為橢圓長軸端點(diǎn)時(shí),
有最大值
解法二:易知,所以
,設(shè)
,則
(以下同解法一)
(Ⅱ)顯然直線不滿足題設(shè)條件,可設(shè)直線
,
聯(lián)立,消去
,整理得:
∴
由得:
或
又
∴
又
∵,即
∴
故由①、②得或
22、(I)解:方程的兩個(gè)根為
,
,
當(dāng)時(shí),
,
所以;
當(dāng)時(shí),
,
,
所以;
當(dāng)時(shí),
,
,
所以時(shí);
當(dāng)時(shí),
,
,
所以.
(II)解:
.
(III)證明:,
所以,
.
當(dāng)時(shí),
,
,
同時(shí),
.
綜上,當(dāng)時(shí),
.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com