中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

5.已知.是平面..是直線.給出下列命題①若..則. 查看更多

 

題目列表(包括答案和解析)

4、已知α.β是平面,m.n是直線,給出下列命題
①若m⊥α,m∥β,則α⊥β
②如果m⊥α,m⊥β,則α∥β
③如果m?α,n?α,m,n是異面直線,那么n不與α相交.
④若α∩β=m,n∥m且n?α,n?β,則n∥α且n∥β.
其中真命題的個數(shù)是( 。

查看答案和解析>>

6、已知α,β是平面,m,n是直線,給出下列命題
①若m⊥α,m?β,則α⊥β.
②若m?α,n?α,m∥β,n∥β,則α∥β.
③如果m?α,n?α,m、n是異面直線,那么n與α相交.
④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.
其中正確命題的個數(shù)是( 。

查看答案和解析>>

已知,是平面,是直線,給出下列命題

①若,,則

②若,,,則

③如果n是異面直線,那么相交.

④若,,且,則

其中正確命題的個數(shù)是( )

A.4             B.3         C.2            D.1

 

查看答案和解析>>

已知,是平面,,是直線,給出下列命題

①若,則

②若,,,,則

③如果、n是異面直線,那么相交.

④若,,且,則

其中正確命題的個數(shù)是( )

A.4             B.3         C.2            D.1

 

查看答案和解析>>

已知,是平面,是直線,給出下列命題

①若,則

②若,,,則

③如果、n是異面直線,那么相交.

④若,,且,則

其中正確命題的個數(shù)是

A.4             B.3               C.2             D.1

 

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

<center id="g9buc"></center>
<big id="g9buc"><delect id="g9buc"><small id="g9buc"></small></delect></big>

20090508

(2)設(shè),則,

由正弦定理:,

所以兩個正三角形的面積和,…………8分

……………10分

,

所以:………………………………………………………………12分

18.解:(1);……………………6分

(2)消費總額為1500元的概率是:……………………7分

消費總額為1400元的概率是:………8分

消費總額為1300元的概率是:

,…11分

所以消費總額大于或等于1300元的概率是;……………………12分

19.(1)證明:因為,所以平面,

又因為

平面,

平面平面;…………………4分

(2)因為,所以平面,所以點到平面的距離等于點E到平面的距離,

過點E作EF垂直CD且交于點F,因為平面平面,所以平面,

所以的長為所求,………………………………………………………………………6分

因為,所以為二面角的平面角,,

=1,

到平面的距離等于1;…………………………………………………………8分

(3)連接,由平面,,得到,

所以是二面角的平面角,

,…………………………………………………………………11分

二面角大小是。……12分

20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

,

解得,所以,…………………3分

所以,

,

所以;…………………………………………………………………6分

(2),因為,所以數(shù)列是遞增數(shù)列,…8分

當(dāng)且僅當(dāng)時,取得最小值,

則:,

所以,即的取值范圍是!12分

21.解:(1)設(shè)點的坐標(biāo)為,則點的坐標(biāo)為,點的坐標(biāo)為,

因為,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

(2)設(shè)點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

 

…………………………………………7分

弦長為定值,則,即,

此時,……………………………………………………9分

所以當(dāng)時,存在直線,截得的弦長為,

    當(dāng)時,不存在滿足條件的直線!12分

22.解:(1)

,……2分

,

因為當(dāng)時取得極大值,所以

所以的取值范圍是:;………………………………………………………4分

(2)由下表:

0

0

遞增

極大值

遞減

極小值

遞增

………………………7分

畫出的簡圖:

依題意得:

解得:,

所以函數(shù)的解析式是:

;……9分

(3)對任意的實數(shù)都有

,

依題意有:函數(shù)在區(qū)間

上的最大值與最小值的差不大于,

………10分

在區(qū)間上有:

,

的最大值是,

的最小值是,……13分

所以

的最小值是!14分

 

 

    1. <tt id="g9buc"></tt>
      <del id="g9buc"><option id="g9buc"></option></del>