中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

(2)求點到平面的距離, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖, 在直角梯形中,

分別是的中點,現(xiàn)將折起,使,

(1)求證:∥平面;

(2)求點到平面的距離.

                                             

 

查看答案和解析>>

(理)(本小題8分)如圖,在四棱錐中,底面是矩形, 平面,,以的中點為球心、為直徑的球面交于點.

(1) 求證:平面平面;

(2)求點到平面的距離.  

證明:(1)由題意,在以為直徑的球面上,則

平面,則

,平面,

,

平面,

∴平面平面.       (3分)

(2)∵的中點,則點到平面的距離等于點到平面的距離的一半,由(1)知,平面,則線段的長就是點到平面的距離

 

     ∵在中,

     ∴的中點,                 (7分)

     則點到平面的距離為                 (8分)

    (其它方法可參照上述評分標準給分)

 

 

查看答案和解析>>

.(本小題滿分12分)

如圖5所示的多面體是由底面為的長方體被截面所截    

而得到的,其中

(1)求

(2)求點到平面的距離.

 

查看答案和解析>>

(本題滿分12分)本題共有2個小題,第1小題滿分8分,第2小題滿分4分.

在正四棱柱中,已知底面的邊長為2,點P是的中點,直線AP與平面角.

(文)(1)求的長;

(2)求異面直線和AP所成角的大小.(結果用

反三角函數(shù)值表示);

(理)(1)求異面直線和AP所成角的大小.(結果用

反三角函數(shù)值表示) ;

(2)求點到平面的距離.

 

查看答案和解析>>

(本小題滿分12分)

在直三棱柱中,中點.

    (1)求證://平面;

    (2)求點到平面的距離;

    (3)求二面角的余弦值.

 

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

          20090508

          (2)設,則,

          由正弦定理:,

          所以兩個正三角形的面積和,…………8分

          ……………10分

          ,,

          所以:………………………………………………………………12分

          18.解:(1);……………………6分

          (2)消費總額為1500元的概率是:……………………7分

          消費總額為1400元的概率是:………8分

          消費總額為1300元的概率是:

          ,…11分

          所以消費總額大于或等于1300元的概率是;……………………12分

          19.(1)證明:因為,所以平面

          又因為,

          平面

          平面平面;…………………4分

          (2)因為,所以平面,所以點到平面的距離等于點E到平面的距離,

          過點E作EF垂直CD且交于點F,因為平面平面,所以平面,

          所以的長為所求,………………………………………………………………………6分

          因為,所以為二面角的平面角,,

          =1,

          到平面的距離等于1;…………………………………………………………8分

          (3)連接,由平面,得到,

          所以是二面角的平面角,

          ,…………………………………………………………………11分

          二面角大小是!12分

          20.解:(1)設等差數(shù)列的公差為,依題意得:

          ,

          解得,所以,…………………3分

          所以,

          ,

          所以;…………………………………………………………………6分

          (2),因為,所以數(shù)列是遞增數(shù)列,…8分

          當且僅當時,取得最小值,

          則:,

          所以,即的取值范圍是。………………………………………12分

          21.解:(1)設點的坐標為,則點的坐標為,點的坐標為,

          因為,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

          (2)設點是軌跡C上的任意一點,則以為直徑的圓的圓心為

          假設滿足條件的直線存在,設其方程為,直線被圓截得的弦為

           

          …………………………………………7分

          弦長為定值,則,即,

          此時,……………………………………………………9分

          所以當時,存在直線,截得的弦長為,

              當時,不存在滿足條件的直線!12分

          22.解:(1),

          ,……2分

          ,

          因為當時取得極大值,所以,

          所以的取值范圍是:;………………………………………………………4分

          (2)由下表:

          0

          0

          遞增

          極大值

          遞減

          極小值

          遞增

          ………………………7分

          畫出的簡圖:

          依題意得:,

          解得:

          所以函數(shù)的解析式是:

          ;……9分

          (3)對任意的實數(shù)都有

          ,

          依題意有:函數(shù)在區(qū)間

          上的最大值與最小值的差不大于,

          ………10分

          在區(qū)間上有:

          ,

          的最大值是,

          的最小值是,……13分

          所以

          的最小值是。………………………………………14分