中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

(2)若點是(1)中軌跡E上的動點.點是定點.是否存在垂直軸的直線.使得直線被以線段為直徑的圓截得的弦長恒為定值?若存在.用表示直線的方程,若不存在.說明理由. 查看更多

 

題目列表(包括答案和解析)

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,
3
2
)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標(biāo);
(2)設(shè)點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程.

查看答案和解析>>

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,
3
2
)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標(biāo);
(2)設(shè)點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;
(3)若M、N是橢圓C上關(guān)于原點對稱的兩個點,點P是橢圓上任意一點,當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時.求證:kPM•kPN是與點P位置無關(guān)的定值.

查看答案和解析>>

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,
3
2
)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標(biāo);
(2)設(shè)點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;
(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點對稱的兩個點,點P是橢圓上任意一點,當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時,那么kPM與kPN之積是與點P位置無關(guān)的定值.試對雙曲線
x2
a2
-
y2
b2
=1
寫出具有類似特性的性質(zhì),并加以證明.

查看答案和解析>>

設(shè)F1、F2分別為橢圓C =1(ab>0)的左、右兩個焦點.

(1)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標(biāo);

(2)設(shè)點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;

查看答案和解析>>

設(shè)F1、F2分別為橢圓C: =1(a>b>0)的左、右兩個焦 點。(1)若橢圓C上的點A(1,)到F1、F2兩點的 距離之和等于4,寫出橢圓C的方程和焦點坐標(biāo);

(2)設(shè)點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程.

 

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

    • 20090508

      (2)設(shè),則

      由正弦定理:,

      所以兩個正三角形的面積和,…………8分

      ……………10分

      ,

      所以:………………………………………………………………12分

      18.解:(1);……………………6分

      (2)消費總額為1500元的概率是:……………………7分

      消費總額為1400元的概率是:………8分

      消費總額為1300元的概率是:

      ,…11分

      所以消費總額大于或等于1300元的概率是;……………………12分

      19.(1)證明:因為,所以平面,

      又因為

      平面,

      平面平面;…………………4分

      (2)因為,所以平面,所以點到平面的距離等于點E到平面的距離,

      過點E作EF垂直CD且交于點F,因為平面平面,所以平面,

      所以的長為所求,………………………………………………………………………6分

      因為,所以為二面角的平面角,

      =1,

      到平面的距離等于1;…………………………………………………………8分

      (3)連接,由平面,得到,

      所以是二面角的平面角,

      ,…………………………………………………………………11分

      二面角大小是!12分

      20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

      ,

      解得,所以,…………………3分

      所以,

      所以;…………………………………………………………………6分

      (2),因為,所以數(shù)列是遞增數(shù)列,…8分

      當(dāng)且僅當(dāng)時,取得最小值,

      則:,

      所以,即的取值范圍是。………………………………………12分

      21.解:(1)設(shè)點的坐標(biāo)為,則點的坐標(biāo)為,點的坐標(biāo)為,

      因為,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

      (2)設(shè)點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

      假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

       

      …………………………………………7分

      弦長為定值,則,即,

      此時,……………………………………………………9分

      所以當(dāng)時,存在直線,截得的弦長為,

          當(dāng)時,不存在滿足條件的直線!12分

      22.解:(1),

      ,……2分

      ,

      因為當(dāng)時取得極大值,所以,

      所以的取值范圍是:;………………………………………………………4分

      (2)由下表:

      0

      0

      遞增

      極大值

      遞減

      極小值

      遞增

      ………………………7分

      畫出的簡圖:

      依題意得:,

      解得:,

      所以函數(shù)的解析式是:

      ;……9分

      (3)對任意的實數(shù)都有

      依題意有:函數(shù)在區(qū)間

      上的最大值與最小值的差不大于,

      ………10分

      在區(qū)間上有:

      ,

      的最大值是,

      的最小值是,……13分

      所以

      的最小值是。………………………………………14分