中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

(Ⅱ)證明:對于都.使得成立. 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列的前n項和(n為正整數(shù)).

(1)令,求證數(shù)列是等差數(shù)列;

(2)求數(shù)列的通項公式;

(3)令。是否存在最小的正整數(shù),使得對于都有恒成立,若存在,求出的值。不存在,請說明理由.

 

查看答案和解析>>

已知數(shù)列的前n項和(n為正整數(shù))。

(1)令,求證數(shù)列是等差數(shù)列,

(2)求數(shù)列的通項公式;

(3)令,。是否存在最小的正整數(shù),使得對于都有恒成立,若存在,求出的值。不存在,請說明理由。

 

查看答案和解析>>

(本題10分)

已知函數(shù)(是自然對數(shù)的底數(shù),).

 (I)證明:對,不等式恒成立;

 (II)數(shù)列的前項和為,求證:

 

查看答案和解析>>

(本題10分)
已知函數(shù)(是自然對數(shù)的底數(shù),).
(I)證明:對,不等式恒成立;
(II)數(shù)列的前項和為,求證:

查看答案和解析>>

(本小題滿分14分)本題(1)、(2)、(3)三個選答題,每小題7分,任選2題作答,滿分14分,如果多做,則按所做的前兩題計分。作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中。

(1)(本小題滿分7分) 選修4-2:矩陣與變換

已知,若所對應的變換把直線變換為自身,求實數(shù),并求的逆矩陣。

 

(2)(本題滿分7分)選修4-4:坐標系與參數(shù)方程

 已知直線的參數(shù)方程:為參數(shù))和圓的極坐標方程:。

①將直線的參數(shù)方程化為普通方程,圓的極坐標方程化為直角坐標方程;

②判斷直線和圓的位置關系。

 

(3)(本題滿分7分)選修4-5:不等式選講

 已知函數(shù)

①解不等式;

②證明:對任意,不等式成立.

 

 

查看答案和解析>>

          1. 2009.4

             

            1-10.CDABB   CDBDA

            11.       12. 4        13.        14.       15.  

            16.   17.

            18.解:(Ⅰ)由題意,有

            .…………………………5分

            ,得

            ∴函數(shù)的單調增區(qū)間為 .……………… 7分

            (Ⅱ)由,得

            .           ……………………………………………… 10分

            ,∴.      ……………………………………………… 14分

            19.解:(Ⅰ)設數(shù)列的公比為,由,.             …………………………………………………………… 4分

            ∴數(shù)列的通項公式為.      ………………………………… 6分

            (Ⅱ) ∵,    ,      ①

            .      ②         

            ①-②得: …………………12分

                         得,                           …………………14分

            20.解:(I)取中點,連接.

            分別是梯形的中位線

            ,又

            ∴面,又

            .……………………… 7分

            (II)由三視圖知,是等腰直角三角形,

                 連接

                 在面AC1上的射影就是,∴

                 ,

            ∴當的中點時,與平面所成的角

              是.           ………………………………14分

                                                           

            21.解:(Ⅰ)由題意:.

            為點M的軌跡方程.     ………………………………………… 4分

            (Ⅱ)由題易知直線l1,l2的斜率都存在,且不為0,不妨設,MN方程為 聯(lián)立得:,設6ec8aac122bd4f6e

                ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

                   同理RQ的方程為,求得.  ………………………… 9分

            .  ……………………………… 13分

            當且僅當時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

            22. 解:(Ⅰ),由題意得,

            所以                    ………………………………………………… 4分

            (Ⅱ)證明:令,

            得:,……………………………………………… 7分

            (1)當時,,在,即上單調遞增,此時.

                      …………………………………………………………… 10分

            (2)當時,,在,在,在,即上單調遞增,在上單調遞減,在上單調遞增,或者,此時只要或者即可,得,

            .                        …………………………………………14分

            由 (1) 、(2)得 .

            ∴綜上所述,對于,使得成立. ………………15分