中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

已知M.N(2.0)兩點.動點P在y軸上的射影為H.且使與分別是公比為2的等比數(shù)列的第三.四項. (1)求動點P的軌跡C的方程, (2)已知過點N的直線l交曲線C于x軸下方兩個不同的點A.B.設(shè)R為AB的中點.若過點R與定點Q的直線交x軸于點D(x0.0).求x0的取值范圍. 查看更多

 

題目列表(包括答案和解析)

(1)(2
1
4
)
1
2
-(-9.6)0-(3
3
8
)-
2
3
+(1.5)-2

(2)已知m-x=
5
+2
,求
m2x-1+m-2x
m-3x+m3x
的值.

查看答案和解析>>

已知M={a|a≤-2或a≥2},A={a|(a-2)(a2-3)=0,a∈M},則集合A的子集共有( 。

查看答案和解析>>

已知M={x|x2-3x-10≤0},N={x|a+1≤x≤2a-1};(1)若M⊆N,求實數(shù)a的取值范圍;(2)若M?N,求實數(shù)a的取值范圍.

查看答案和解析>>

已知M(1+cos2x,1),N(1,
3
sin2x+a)
(x∈R,a∈R,a是常數(shù)),且y=
OM
ON
(其中O為坐標原點).
(1)求y關(guān)于x的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(3)若x∈[0,
π
2
]
時,f(x)的最大值為4,求a的值.

查看答案和解析>>

在平面直角坐標系xOy中,已知⊙M經(jīng)過點F1(0,-c),F(xiàn)2(0,c),A(
3
c,0)三點,其中c>0.
(1)求⊙M的標準方程(用含c的式子表示);
(2)已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)(其中a2-b2=c2)的左、右頂點分別為D、B,⊙M與x軸的兩個交點分別為A、C,且A點在B點右側(cè),C點在D點右側(cè),求橢圓離心率的取值范圍.

查看答案和解析>>

 

一、

20080506

題號

1

2

3

4

5

6

7

8

9

10

11

12

選項

A

D

C

A

A

C

B

B

C

D

C

B

二、填空題:

13.-1    14.5   15.    16.③④      

三、解答題:

17.解:(Ⅰ) =……1分

=……2分

  ……3分

 

……4分

  .……6分

(Ⅱ)在中,, ,

……7分

由正弦定理知:……8分

=.    ……10分

18.解:(Ⅰ)選取的5只恰好組成完整“奧運吉祥物”的概率

6ec8aac122bd4f6e                                     ………………4分

(Ⅱ)6ec8aac122bd4f6e                              …………………5分            6ec8aac122bd4f6e

6ec8aac122bd4f6e                                      …………9分

ξ的分布列為:

ξ

10

8

6

4

P

3/28

31/56

9/28

1/56

6ec8aac122bd4f6e                                …………12分

19. 解法一:

   (1)設(shè)于點,∵,,∴平面. 作,連結(jié),則,是二面角的平面角.…3分

 由已知得,,

,二面角的大小為.…6分

   (2)當中點時,有平面.

證明:取的中點連結(jié),則

,故平面即平面.

,∴,又平面

.…………………………………………12分

解法二:以D為原點,以DA、DC、DP為x軸、y軸、z軸建立空間直角坐標系,則

,,,,.…………2分

   (1),,

,設(shè)平面的一個法向量

,則.

設(shè)平面的一個法向量為,則.

,∴二面角的大小為. …………6分

   (2)令

 

由已知,,要使平面,只須,即則有

,得,中點時,有平面.…12分

20解:(I)f(x)定義域為(一1,+∞),                        …………………2分

    由得x<一1或x>1/a,由得一1<x<1/a,

     f(x)的單調(diào)增區(qū)間為(1/a,+∞),單調(diào)減區(qū)間為(一1,1/a)…………………6分

(Ⅱ)由(I)可知:

    ①當0<a≤1/2時,,f(x)在[1,2]上為減函數(shù),

    ………………………………8分

    ②當1/2<a<1時,f(x)在[1,1/a]上為減函數(shù),在(1/a,2]上為增函數(shù),

    …………………………………10分

    ③當a≥1時,f(x)在[1,2]上為增函數(shù),

    …………………………………12分

21.解:(1),設(shè)動點P的坐標為,所以

所以

由條件,得,又因為是等比,

所以,所以,所求動點的軌跡方程 ……………………6分

   (2)設(shè)直線l的方程為

聯(lián)立方程組得,

, …………………………………………8分

, ………………………………………………10分

直線RQ的方程為,

  …………………………………………………………………12分

22. 解:(Ⅰ)由題意,                -----------------------------------------------------2分

,

        兩式相減得.                --------------------3分

        當時,,

.            --------------------------------------------------4分

(Ⅱ)∵,

,

       ,

  ,

  ………

 

以上各式相加得

.

  ,∴.      ---------------------------6分

.     -------------------------------------------------7分

,

.

.

         =.

.  -------------------------------------------------------------9分

(3)=

                    =4+

   =

                    .  -------------------------------------------10分

        ,  ∴ 需證明,用數(shù)學(xué)歸納法證明如下:

        ①當時,成立.

        ②假設(shè)時,命題成立即

        那么,當時,成立.

        由①、②可得,對于都有成立.

       ∴.       ∴.--------------------12分

 

  • <var id="fcsmp"></var>

    <samp id="fcsmp"><b id="fcsmp"></b></samp>
    1. <table id="fcsmp"></table>