中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

16.用字母A.Y.數(shù)字1.8.9構(gòu)成一個(gè)字符不重復(fù)的五位號(hào)牌.要求字母A.Y不 查看更多

 

題目列表(包括答案和解析)

(12分)若集合M={aa=x2-y2,x,y∈Z}.

(1)整數(shù)8,9,10是否屬于M;

(2)證明:一切奇數(shù)都屬于M.

  

查看答案和解析>>

(2007•成都一模)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且m∥n,把其中x,y所滿足的關(guān)系式記為y=f(x).若f′(x)為f(x)的導(dǎo)函數(shù),F(xiàn)(x)=f(x)+af'(x)(a>0),且F(x)是R上的奇函數(shù).
(Ⅰ)求
ba
和c
的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間(用字母a表示);
(Ⅲ)當(dāng)a=2時(shí),設(shè)0<t<4且t≠2,曲線y=f(x)在點(diǎn)A(t,f(t))處的切線與曲線y=f(x)相交于點(diǎn)B(m,f(m))(A與B不重合),直線x=t與y=f(m)相交于點(diǎn)C,△ABC的面積為S,試用t表示△ABC的面積S(t);并求S(t)的最大值.

查看答案和解析>>

給程序模塊命名,需要用3個(gè)字符,其中首字符要求用字母A&GU&Z,后兩個(gè)要求用數(shù)字1&9.問(wèn)最多可以給多少個(gè)程序命名?

查看答案和解析>>

已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且mn,把其中x,y所滿足的關(guān)系式記為y=f(x).若f′(x)為f(x)的導(dǎo)函數(shù),F(xiàn)(x)=f(x)+af'(x)(a>0),且F(x)是R上的奇函數(shù).
(Ⅰ)求
b
a
和c
的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間(用字母a表示);
(Ⅲ)當(dāng)a=2時(shí),設(shè)0<t<4且t≠2,曲線y=f(x)在點(diǎn)A(t,f(t))處的切線與曲線y=f(x)相交于點(diǎn)B(m,f(m))(A與B不重合),直線x=t與y=f(m)相交于點(diǎn)C,△ABC的面積為S,試用t表示△ABC的面積S(t);并求S(t)的最大值.

查看答案和解析>>

(理)已知函數(shù)f(x)=xlnx.

(1)求函數(shù)f(x)的單調(diào)區(qū)間和最小值;

(2)當(dāng)b>0時(shí),求證:bb(其中e=2.718 28…是自然對(duì)數(shù)的底數(shù));

(3)若a>0,b>0,證明f(a)+(a+b)ln2≥f(a+b)-f(b).

(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且mn,把其中x,y所滿足的關(guān)系式記為y=f(x).若f′(x)為f(x)的導(dǎo)函數(shù),F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函數(shù).

(1)求和c的值.

(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間(用字母a表示).

(3)當(dāng)a=2時(shí),設(shè)0<t<4且t≠2,曲線y=f(x)在點(diǎn)A(t,f(t))處的切線與曲線y=f(x)相交于點(diǎn)B(m,f(m))(A與B不重合),直線x=t與y=f(m)相交于點(diǎn)C,△ABC的面積為S,試用t表示△ABC的面積S(t),并求S(t)的最大值.

查看答案和解析>>

一.選擇題 (本大題共10小題,每題5分,共50分)

1.C;    2.D;    3,A;    4.B;     5.B;

6.B;    7.B;    8.B;    9.D;     10.B;

二.填空題 (本大題共7小題,每題4分,共28分)

11.;  12.; ;   14.,;  15.;  16.;  17.

三.解答題 (本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)

18.解:(1)因?yàn)?sub>,所以,得…………3分

    又因?yàn)?sub>…………………………………3分

(2)由,得,…………………………………2分

    所以,…………………………………2分

    ,…………………………………2分

    ………………………………2分

19.如圖建立空間直角坐標(biāo)系,                  

 則,,

……………………1分

    (1),………………1分

        ,……………………1分

        ……………………1分

      ∴,……2分

     又相交,所以平面……1分

(2)設(shè)平面的一個(gè)法向量為,

因?yàn)?sub>,所以可取…………………………………………………2分

又平面的一個(gè)法向量為……………………………………………2分

  …………………………2分

∴二面角的大小為……………………………………………1分

20.解:(1)拋一次骰子面朝下的點(diǎn)數(shù)有l(wèi)、2、3、4四種情況,

而點(diǎn)數(shù)大于2的有2種,故闖第一關(guān)成功的概率……………………2分

(2)記事件“拋擲次骰子,各次面朝下的點(diǎn)數(shù)之和大于”為事件,

拋二次骰子面朝下的點(diǎn)數(shù)和

情況如右圖所示,

…………………………………………2分

拋三次骰子面朝下的點(diǎn)數(shù)依次記為:,,

考慮的情況

時(shí),有1種,時(shí),有3種

時(shí),有6種,時(shí),有10種

……………………………4分

由題意知可取0、1、2、3,

,………………………1分

,………………………1分

,………………………1分

,………………………1分

的分布列為:

 

 

 

   ……………………2分

21.(1)法一:由已知………………………………1分

    設(shè),則,……………………………1分

    ,………………………1分

    由得,,

解得………………………2分

法二:記A點(diǎn)到準(zhǔn)線距離為,直線的傾斜角為,

由拋物線的定義知,………………………2分

,

………………………3分

(2)設(shè),

,………………………1分

首先由

,同理……………………2分

,…………………………2分

即:,

    ∴,…………………………2分

,得,

得,

的取值范圍為…………………………3分

22.(1)時(shí),,

,,………………………2分

所以切線方程為………………………2分

(2)1°當(dāng)時(shí),,則

,,

再令,

當(dāng)時(shí),∴上遞減,

∴當(dāng)時(shí),,

,所以上遞增,,

所以……………………5分

時(shí),,則

由1°知當(dāng)時(shí)上遞增

當(dāng)時(shí),,

所以上遞增,∴

;………………………5分

由1°及2°得:………………………1分

 

 

命題人

呂峰波(嘉興)、 王書朝(嘉善)、 王云林(平湖)

胡水林(海鹽)、 顧貫石(海寧)、  張曉東(桐鄉(xiāng))

     吳明華、張啟源、徐連根、洗順良、李富強(qiáng)、吳林華

 


同步練習(xí)冊(cè)答案