中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

5.已知函數(shù)f(x)=log2(x2-2ax+4-3a)的值域?yàn)閷?shí)數(shù)集R.則實(shí)數(shù)a的取值范圍是 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=x3+x-16,

(1)求曲線y=f(x)在點(diǎn)(2,-6)處的切線的方程;

(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點(diǎn),求直線l的方程及切點(diǎn)坐標(biāo);

 

查看答案和解析>>

已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x-y+1=0,當(dāng)x=時(shí),y=f(x)有極值.

(1)求a、b、c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小值.

 

查看答案和解析>>

已知函數(shù)f(x)=x3-3x及y=f(x)上一點(diǎn)P(1,-2),過點(diǎn)P作直線l.

(1)求使直線l和y=f(x)相切且以P為切點(diǎn)的直線方程;

(2)求使直線l和y=f(x)相切且切點(diǎn)異于P的直線方程.

 

查看答案和解析>>

已知函數(shù)f(x)=x3-2x2+ax(x∈R,a∈R),在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直.

(1)求a的值和切線l的方程;

(2)設(shè)曲線y=f(x)上任一點(diǎn)處的切線的傾斜角為θ,求θ的取值范圍

 

查看答案和解析>>

已知函數(shù)f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函數(shù)y=g(x)-x在[0,1]上的最小值;

(2)當(dāng)a≥時(shí),函數(shù)t(x)=f(x)+g(x)的圖像記為曲線C,曲線C在點(diǎn)(0,1)處的切線為l,是否存在a使l與曲線C有且僅有一個(gè)公共點(diǎn)?若存在,求出所有a的值;否則,說明理由.

(3)當(dāng)x≥0時(shí),g(x)≥-f(x)+恒成立,求a的取值范圍.

查看答案和解析>>

1―6、AABCCD   7―12、DBBDCA

13、(lg2,+∞)   14、0, 15、-1

16、(文)-10,(理)(2-i)/3

19.解:(1)∵A1B1C1-ABC為直三棱住  ∴CC1⊥底面ABC  ∴CC1⊥BC

    ∵AC⊥CB   ∴BC⊥平面A1C1CA………………2分

    ∴BC長度即為B點(diǎn)到平面A1C1CA的距離

    ∵BC=2  ∴點(diǎn)B到平面A1C1CA的距離為2……………………4分

(2)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結(jié)BM

    ∵BC⊥平面ACC­1A1   ∴CM為BM在平面A1C1CA的內(nèi)射影

    ∴BM⊥A1G    ∴∠CMB為二面角B―A1D―A的平面角  ……………………6分

    平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn)

    ∴CG=2,DC=1 在直角三角形CDG中,       ……9分

    即二面角B―A1D―A的大小為                   ………………10分

   

<strong id="o90gk"></strong>

      (1)同解法一……………………4分

      (2)∵A1B1C1―ABC為直三棱住   C1C=CB=CA=2

      AC⊥CB  D、E分別為C1C、B1C1的中點(diǎn)

      建立如圖所示的坐標(biāo)系得

      C(0,0,0) B(2,0,0)  A(0,2,0)

      C1(0,0,2)  B1(2,0,2)  A­1(0,2,2)

      D(0,0,1)  E(1,0,2)………………6分

        設(shè)平面A1BD的法向量為n

             …………8分

      平面ACC1A1­的法向量為m=(1,0,0)  …………9分

      即二面角B―A1D―A的大小為………………10分

      20.(文) 解:將各項(xiàng)指標(biāo)合格分別記作A1,A2,A3,A4,A5,則

      (1)由于“至少有兩項(xiàng)指標(biāo)不合格”,與“至多1項(xiàng)指標(biāo)不合格”對立,故這個(gè)電子

      元件不能出廠的概率為  ………………6分

      (2)直到五項(xiàng)指標(biāo)全部檢查完才能確定該元件是否出廠,表明前4項(xiàng)檢驗(yàn)中恰有1項(xiàng)

      檢驗(yàn)不合格. 故直到五項(xiàng)指標(biāo)全部檢查完才能確定該元件是否出廠的概率為

      ……………………12分

      (理)  解:(Ⅰ)

       

      1

      2

      3

      4

      5

      6

      7

      8

      9

      P

      (Ⅱ)

      21.解:(1)當(dāng)k=0時(shí),y=1與3x2-y2=1有二公共點(diǎn);若k≠0,則x=(y-1)代入3x2-y2=1有(3-k2)y2-6y+3-k2=0,顯然k2=3時(shí),直線與雙曲線漸近線平行,無二公共點(diǎn),所以k2≠3.由y∈R,所以Δ=36-4(3-k2)2≥0,所以0<k2<6,且k2≠3.綜合知k≠(-,)且k≠±時(shí),直線與雙曲線交于二點(diǎn),反之亦然.

      (2)設(shè)A(x1,y1)、B(x2,y2),消去y,得(3-k2)x2-2kx-2=0的二根為x1、x2,所以x1+x2=,x1x2=,由(1)知y1y2=1,因?yàn)閳A過原點(diǎn),以AB為直徑,所以x1x2+y1y2=0,所以k2=1,即k=±1為所求的值.

      22.解:(1)  ………………2分

          由已知條件得:    ………………4分

             (2)………………5分

          ………………6分

          令    ………………7分

          ∴函數(shù)的單調(diào)遞增區(qū)間為

          當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為(0,2)…………8分

          綜上:當(dāng)m>0時(shí),函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時(shí),

          函數(shù)的單調(diào)遞增區(qū)間為(0,2)………………9分

         (3)由(1)得: 

          …………10分

          令………………11分

         

          即:……………………14分

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

      數(shù)學(xué)2參考答案(2007年10月17日

      1―6、AABCCD   7―12、DBBDCA

      13、(lg2,+∞)   14、0, 15、-1

      16、(文)-10,(理)(2-i)/3

      19.解:(1)∵A1B1C1-ABC為直三棱住  ∴CC1⊥底面ABC  ∴CC1⊥BC

          ∵AC⊥CB   ∴BC⊥平面A1C1CA………………2分

          ∴BC長度即為B點(diǎn)到平面A1C1CA的距離

          ∵BC=2  ∴點(diǎn)B到平面A1C1CA的距離為2……………………4分

      (2)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結(jié)BM

          ∵BC⊥平面ACC­1A1   ∴CM為BM在平面A1C1CA的內(nèi)射影

          ∴BM⊥A1G    ∴∠CMB為二面角B―A1D―A的平面角  ……………………6分

          平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn)

          ∴CG=2,DC=1 在直角三角形CDG中,       ……9分

          即二面角B―A1D―A的大小為                   ………………10分

         

      • (1)同解法一……………………4分

        (2)∵A1B1C1―ABC為直三棱住   C1C=CB=CA=2

        AC⊥CB  D、E分別為C1C、B1C1的中點(diǎn)

        建立如圖所示的坐標(biāo)系得

        C(0,0,0) B(2,0,0)  A(0,2,0)

        C1(0,0,2)  B1(2,0,2)  A­1(0,2,2)

        D(0,0,1)  E(1,0,2)………………6分

          設(shè)平面A1BD的法向量為n

               …………8分

        平面ACC1A1­的法向量為m=(1,0,0)  …………9分

        即二面角B―A1D―A的大小為………………10分

        20.(文) 解:將各項(xiàng)指標(biāo)合格分別記作A1,A2,A3,A4,A5,則

        (1)由于“至少有兩項(xiàng)指標(biāo)不合格”,與“至多1項(xiàng)指標(biāo)不合格”對立,故這個(gè)電子

        元件不能出廠的概率為  ………………6分

        (2)直到五項(xiàng)指標(biāo)全部檢查完才能確定該元件是否出廠,表明前4項(xiàng)檢驗(yàn)中恰有1項(xiàng)

        檢驗(yàn)不合格. 故直到五項(xiàng)指標(biāo)全部檢查完才能確定該元件是否出廠的概率為

        ……………………12分

        (理)  解:(Ⅰ)

        1

        2

        3

        4

        5

        6

        7

        8

        9

        P

        (Ⅱ)

        21.解:(1)當(dāng)k=0時(shí),y=1與3x2-y2=1有二公共點(diǎn);若k≠0,則x=(y-1)代入3x2-y2=1有(3-k2)y2-6y+3-k2=0,顯然k2=3時(shí),直線與雙曲線漸近線平行,無二公共點(diǎn),所以k2≠3.由y∈R,所以Δ=36-4(3-k2)2≥0,所以0<k2<6,且k2≠3.綜合知k≠(-,)且k≠±時(shí),直線與雙曲線交于二點(diǎn),反之亦然.

        (2)設(shè)A(x1,y1)、B(x2,y2),消去y,得(3-k2)x2-2kx-2=0的二根為x1、x2,所以x1+x2=,x1x2=,由(1)知y1y2=1,因?yàn)閳A過原點(diǎn),以AB為直徑,所以x1x2+y1y2=0,所以k2=1,即k=±1為所求的值.

        22.解:(1)  ………………2分

            由已知條件得:    ………………4分

               (2)………………5分

            ………………6分

            令    ………………7分

            ∴函數(shù)的單調(diào)遞增區(qū)間為

            當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為(0,2)…………8分

            綜上:當(dāng)m>0時(shí),函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時(shí),

            函數(shù)的單調(diào)遞增區(qū)間為(0,2)………………9分

           (3)由(1)得: 

            …………10分

            令………………11分

           

            即:……………………14分

         

        <menuitem id="o90gk"></menuitem>