中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

(3)若分別是函數(shù)的兩個極值點(diǎn).且 其中O為原點(diǎn).求a+b的取值范圍. 查看更多

 

題目列表(包括答案和解析)

已知三個函數(shù),它們各自的最小值恰好是函數(shù)的三個零點(diǎn)(其中t是常數(shù),且0<t<1)

(1)求證:

設(shè)的兩個極值點(diǎn)分別為,若,求f(x)

 

查看答案和解析>>

已知三個函數(shù),它們各自的最小值恰好是函數(shù)的三個零點(diǎn)(其中t是常數(shù),且0<t<1)
(1)求證:
設(shè)的兩個極值點(diǎn)分別為,若,求f(x)

查看答案和解析>>

給出下列六個命題:

②若f'(x)=0,則函數(shù)y=f(x)在x=x取得極值;
③“”的否定是:“?x∈R,均有ex≥0”;
④已知點(diǎn)G是△ABC的重心,過G作直線與AB,AC兩邊分別交于M,N兩點(diǎn),且,則;
⑤已知點(diǎn)到直線的距離為1;
⑥若|x+3|+|x-1|≤a2-3a,對任意的實(shí)數(shù)x恒成立,則實(shí)數(shù)a≤-1,或a≥4;
其中真命題是    (把你認(rèn)為真命題序號都填在橫線上)

查看答案和解析>>

已知三個函數(shù)y=sinx+1,y=
x2-2x+2+t
,y=
1
2
(x+
1-t
x
)(x>0)
,它們各自的最小值恰好是函數(shù)
f(x)=x3+ax2+bx+c的三個零點(diǎn)(其中t是常數(shù),且0<t<1)
(1)求證:a2=2b+2
(2)設(shè)f(x)=x3+ax2+bx+c的兩個極值點(diǎn)分別為(x1,m),(x2,n),若|x1-x2|=
6
3
,求f(x).

查看答案和解析>>

已知三個函數(shù)y=sinx+1,y=
x2-2x+2+t
,y=
1
2
(x+
1-t
x
)(x>0)
,它們各自的最小值恰好是函數(shù)
f(x)=x3+ax2+bx+c的三個零點(diǎn)(其中t是常數(shù),且0<t<1)
(1)求證:a2=2b+2
(2)設(shè)f(x)=x3+ax2+bx+c的兩個極值點(diǎn)分別為(x1,m),(x2,n),若|x1-x2|=
6
3
,求f(x).

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.    15.    16.①③④

三、解答題

17.解:(1)由題設(shè)

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設(shè)圖象向左平移m個單位,得到函數(shù)的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由題設(shè)知

……………………3分

,

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

∵EF為△A­BC1的中位線,

∴EF//BC1,……………………3分

又∵EF平面AB1F,BC1平面AB1F

∴BC1//平面AB1F,………………6分

(2)在正三棱柱中,

B2F⊥A1C1

而A1C1B1⊥面ACC1A1,

∵B1F⊥平面AA1C1C,A1M平面AA1C1C,

∴B1F⊥A1M,

在△AA1F中,

在△A1MC1中,…………………………9分

∴∠AFA1=∠A1MC1,

又∵∠A1MC1+∠MA1C1=90°,

∴∠AFA1+∠MA1C1=90°,

∴A1M⊥AF,…………………………11分

又∵,

∴A1M⊥平面AFB1.…………………………12分

20.(本小題滿分12分)

解:(1)先后兩次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別為a,b,

則事件總數(shù)為6×6=36…………2分

  • 當(dāng)a=1時,b=1,2,3,4

    a=2時,b=1,2,3

    a=3時,b=1,2

    a=4,b=1

    共有(1,1)(1,2)……

    (4,1)10種情況…………6分

    …………7分

    (2)相切的充要條件是

    滿足條件的情況只有兩種情況…………10分

    ……12分

    21.(本小題滿分12分)

    解:(1)設(shè)

    ,

    …………………………3分

    ,這就是軌跡E的方程.……………………4分

    (2)當(dāng)時,軌跡為橢圓,方程為①…………5分

    設(shè)直線PD的方程為

    代入①,并整理,得

       ②

    由題意,必有,故方程②有兩上不等實(shí)根.

    設(shè)點(diǎn)

    由②知,………………7分

    直線QF的方程為

    當(dāng)時,令,

    代入

    整理得

    再將代入,

    計(jì)算,得x=1,即直線QF過定點(diǎn)(1,0)

    當(dāng)k=0時,(1,0)點(diǎn)……………………12分

    22.(本小題滿分14分)

    解:(1)當(dāng)a=0,b=3時,

    ,解得

    當(dāng)x變化時,變化狀態(tài)如下表:

    0

    (0,2)

    2

    +

    0

    -

    0

    +

    0

    -4

    從上表可知=

    ……………………5分

    (2)當(dāng)a=0時,≥在恒成立,

    在在恒成立,……………………………7分

    d則

    x>1時,>0,

    是增函數(shù),

    b≤1.…………………………………………………………9分

    (Ⅲ)∵ ,∴?=0,

    ,∴

    由題知,的兩根,

    >0………………………11分

    則①式可化為

    ………………………………………………12分

    當(dāng)且僅當(dāng),即時取“=”.

    的取值范圍是 .……………………………………14分