中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數。

(1)證明:

(2)若數列的通項公式為,求數列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設數列滿足:,設,

若(2)中的滿足對任意不小于2的正整數,恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于兩點,又過作軌跡的切線、,當,求直線的方程.

查看答案和解析>>

(本小題滿分14分)設函數

 (1)求函數的單調區(qū)間;

 (2)若當時,不等式恒成立,求實數的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數,

(1)討論時, 的單調性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實數,使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設數列的前項和為,對任意的正整數,都有成立,記。

(I)求數列的通項公式;

(II)記,設數列的前項和為,求證:對任意正整數都有;

(III)設數列的前項和為。已知正實數滿足:對任意正整數恒成立,求的最小值。

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.20     15.    16.①③④

三、解答題

17.解:(1)由題設

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設圖象向左平移m個單位,得到函數的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設等差數列的公差為d,等比數列的公比為q,

由題設知

……………………3分

,

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

證明:(1)取AC中點O,

  • <pre id="jwgnd"></pre>

      • <nobr id="jwgnd"></nobr>

          ∴PO⊥AC,

          又∵面PAC⊥面ABC,PO面PAC,

          ∴PO⊥面ABC,……………………2分

          連結OD,則OD//BC,

          ∴DO⊥AC,

          由三垂線定理知AC⊥PD.……………………4分

          (2)連接OB,過E作EF⊥OB于F,

          又∵面POB⊥面ABC,

          ∴EF⊥面ABC,

          過F作FG⊥AC,連接EG,

          由三垂線定理知EG⊥AC,

          ∴∠EGF即為二面角E―AC―B的平面角…………6分

          ……………………9分

          (3)由題意知

          .…………………………12分

          20.(本小題滿分12分)

          解:(1)設“生產一臺儀器合格”為事件A,則

          ……………………2分

          (2)每月生產合格儀器的數量可為3,2,1,0,則

          所以的分布列為:

          3

          2

          1

          0

          P

           

          的數學期望

          …………9分

          (3)該廠每生產一件儀器合格率為,

          ∴每臺期望盈利為(萬元)

          ∴該廠每月期望盈利額為萬元……………………12分

          21.(本小題滿分12分)

          解:(1)設

          ,

          ,

          …………………………3分

          ,這就是軌跡E的方程.……………………4分

          (2)當時,軌跡為橢圓,方程為①…………5分

          設直線PD的方程為

          代入①,并整理,得

             ②

          由題意,必有,故方程②有兩上不等實根.

          設點

          由②知,………………7分

          直線QF的方程為

          時,令,

          代入

          整理得,

          再將代入,

          計算,得x=1,即直線QF過定點(1,0)

          當k=0時,(1,0)點……………………12分

          22.(本小題滿分14分)

          解:(1)

          由題知,即a-1=0,∴a=1.……………………………2分

          x≥0,∴≥0,≥0,

          又∵>0,∴x≥0時,≥0,

          上是增函數.……………………4分

          (Ⅱ)由(Ⅰ)知

          下面用數學歸納法證明>0.

          ①當n=1時,=1>0成立;

          ②假設當時,>0,

          上是增函數,

          >0成立,

          綜上當時,>0.……………………………………6分

          >0,1+>1,∴>0,

          >0,∴,…………………………………8分

          =1,∴≤1,綜上,0<≤1.……………………………9分

          (3)∵0<≤1,

          ,

          ,

          ,

          >0,………………………………………11分

          =??……

            =n.……………………………12分

          ∴Sn++…+

          +()2+…+()n

          ==1.

          ∴Sn<1.………………………………………………………………14分