題目列表(包括答案和解析)
|
|
|
|
|
|
|
|
|
|
|
|
C | 0 m |
C | r n-m |
C | 1 m |
C | r-1 n-m |
C | r m |
C | 0 n-m |
C | r n |
| ||||
|
| ||||||||||||
|
C | 0 m |
C | r n-m |
C | 1 m |
C | r-1 n-m |
C | r m |
C | 0 n-m |
C | r n |
在中,滿足
,
是
邊上的一點(diǎn).
(Ⅰ)若,求向量
與向量
夾角的正弦值;
(Ⅱ)若,
=m (m為正常數(shù)) 且
是
邊上的三等分點(diǎn).,求
值;
(Ⅲ)若且
求
的最小值。
【解析】第一問(wèn)中,利用向量的數(shù)量積設(shè)向量與向量
的夾角為
,則
令=
,得
,又
,則
為所求
第二問(wèn)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以
,
(1)當(dāng)時(shí),則
=
(2)當(dāng)時(shí),則
=
第三問(wèn)中,解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">
,
;
所以即
于是
得
從而
運(yùn)用三角函數(shù)求解。
(Ⅰ)解:設(shè)向量與向量
的夾角為
,則
令=
,得
,又
,則
為所求……………2分
(Ⅱ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以
,
(1)當(dāng)時(shí),則
=
;-2分
(2)當(dāng)時(shí),則
=
;--2分
(Ⅲ)解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">
,
;
所以即
于是
得
從而---2分
==
=…………………………………2分
令,
則
,則函數(shù)
,在
遞減,在
上遞增,所以
從而當(dāng)
時(shí),
C | 0m |
C | rn-m |
C | 1m |
C | r-1n-m |
C | rm |
C | 0n-m |
C | rn |
| ||||
|
| ||||||||||||
|
C | 0m |
C | rn-m |
C | 1m |
C | r-1n-m |
C | rm |
C | 0n-m |
C | rn |
函數(shù)有意義,需使,其定義域?yàn)?sub>
,排除C,D,又因?yàn)?sub>
,所以當(dāng)
時(shí)函數(shù)為減函數(shù),故選A. w.w.w.k.s.5.u.c.o.m
答案:A.
【命題立意】:本題考查了函數(shù)的圖象以及函數(shù)的定義域、值域、單調(diào)性等性質(zhì).本題的難點(diǎn)在于給出的函數(shù)比較復(fù)雜,需要對(duì)其先變形,再在定義域內(nèi)對(duì)其進(jìn)行考察其余的性質(zhì).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com