題目列表(包括答案和解析)
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
定義變換:
可把平面直角坐標(biāo)系上的點(diǎn)
變換到這一平面上的點(diǎn)
.特別地,若曲線
上一點(diǎn)
經(jīng)變換公式
變換后得到的點(diǎn)
與點(diǎn)
重合,則稱點(diǎn)
是曲線
在變換
下的不動(dòng)點(diǎn).
(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,且焦距為
,長(zhǎng)軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓
的標(biāo)準(zhǔn)方程. 并求出當(dāng)
時(shí),其兩個(gè)焦點(diǎn)
、
經(jīng)變換公式
變換后得到的點(diǎn)
和
的坐標(biāo);
(2)當(dāng)時(shí),求(1)中的橢圓
在變換
下的所有不動(dòng)點(diǎn)的坐標(biāo);
(3)試探究:中心為坐標(biāo)原點(diǎn)、對(duì)稱軸為坐標(biāo)軸的雙曲線在變換
:
(
,
)下的不動(dòng)點(diǎn)的存在情況和個(gè)數(shù).
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
定義變換:
可把平面直角坐標(biāo)系上的點(diǎn)
變換到這一平面上的點(diǎn)
.特別地,若曲線
上一點(diǎn)
經(jīng)變換公式
變換后得到的點(diǎn)
與點(diǎn)
重合,則稱點(diǎn)
是曲線
在變換
下的不動(dòng)點(diǎn).
(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,且焦距為
,長(zhǎng)軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓
的標(biāo)準(zhǔn)方程. 并求出當(dāng)
時(shí),其兩個(gè)焦點(diǎn)
、
經(jīng)變換公式
變換后得到的點(diǎn)
和
的坐標(biāo);
(2)當(dāng)時(shí),求(1)中的橢圓
在變換
下的所有不動(dòng)點(diǎn)的坐標(biāo);
(3)試探究:中心為坐標(biāo)原點(diǎn)、對(duì)稱軸為坐標(biāo)軸的雙曲線在變換
:
(
,
)下的不動(dòng)點(diǎn)的存在情況和個(gè)數(shù).
(本題滿分18分)第(1)小題滿分4分,第(2)小題滿分8分,第(3)小題滿分6分。
定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”。如果兩個(gè)橢圓的“特征三角形”是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比。已知橢圓。
若橢圓,判斷
與
是否相似?如果相似,求出
與
的相似比;如果不相似,請(qǐng)說明理由;
寫出與橢圓
相似且短半軸長(zhǎng)為
的橢圓
的方程;若在橢圓
上存在兩點(diǎn)
、
關(guān)于直線
對(duì)稱,求實(shí)數(shù)
的取值范圍?
如圖:直線與兩個(gè)“相似橢圓”
和
分別交于點(diǎn)
和點(diǎn)
,證明:
(本題滿分18分)第(1)小題滿分4分,第(2)小題滿分8分,第(3)小題滿分6分。
定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”。如果兩個(gè)橢圓的“特征三角形”是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比。已知橢圓。
若橢圓,判斷
與
是否相似?如果相似,求出
與
的相似比;如果不相似,請(qǐng)說明理由;
寫出與橢圓
相似且短半軸長(zhǎng)為
的橢圓
的方程;若在橢圓
上存在兩點(diǎn)
、
關(guān)于直線
對(duì)稱,求實(shí)數(shù)
的取值范圍?
如圖:直線與兩個(gè)“相似橢圓”
和
分別交于點(diǎn)
和點(diǎn)
,證明:
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com