題目列表(包括答案和解析)
令。如果對(duì)
,滿足
為整數(shù),則稱k為“好數(shù)”,那么區(qū)間
內(nèi)所有的“好數(shù)”的和S=( )
在中,滿足
,
是
邊上的一點(diǎn).
(Ⅰ)若,求向量
與向量
夾角的正弦值;
(Ⅱ)若,
=m (m為正常數(shù)) 且
是
邊上的三等分點(diǎn).,求
值;
(Ⅲ)若且
求
的最小值。
【解析】第一問中,利用向量的數(shù)量積設(shè)向量與向量
的夾角為
,則
令=
,得
,又
,則
為所求
第二問因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以
,
(1)當(dāng)時(shí),則
=
(2)當(dāng)時(shí),則
=
第三問中,解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">
,
;
所以即
于是
得
從而
運(yùn)用三角函數(shù)求解。
(Ⅰ)解:設(shè)向量與向量
的夾角為
,則
令=
,得
,又
,則
為所求……………2分
(Ⅱ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以
,
(1)當(dāng)時(shí),則
=
;-2分
(2)當(dāng)時(shí),則
=
;--2分
(Ⅲ)解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">
,
;
所以即
于是
得
從而---2分
==
=…………………………………2分
令,
則
,則函數(shù)
,在
遞減,在
上遞增,所以
從而當(dāng)
時(shí),
已知,函數(shù)
(1)當(dāng)時(shí),求函數(shù)
在點(diǎn)(1,
)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使
>g(xo)成立,求正實(shí)數(shù)
的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)
時(shí),
又
所以函數(shù)
在點(diǎn)(1,
)的切線方程為
;(2)中令
有
對(duì)a分類討論,和
得到極值。(3)中,設(shè)
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當(dāng)時(shí),
又
∴ 函數(shù)在點(diǎn)(1,
)的切線方程為
--------4分
(Ⅱ)令 有
①
當(dāng)即
時(shí)
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
極大值 |
|
極小值 |
|
故的極大值是
,極小值是
②
當(dāng)即
時(shí),
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述 時(shí),極大值為
,無極小值
時(shí) 極大值是
,極小值是
----------8分
(Ⅲ)設(shè),
對(duì)求導(dǎo),得
∵,
∴ 在區(qū)間
上為增函數(shù),則
依題意,只需,即
解得 或
(舍去)
則正實(shí)數(shù)的取值范圍是(
,
)
根據(jù)指令,機(jī)器人在平面上能完成下列動(dòng)作:先從原點(diǎn)O沿正東偏北(
)方向行走一段時(shí)間后,再向正北方向行走一段時(shí)間,但何時(shí)改變方向不定。假定機(jī)器人行走速度為10米/分鐘,則機(jī)器人行走2分鐘時(shí)的可能落點(diǎn)區(qū)域的面積是 。
一、選擇題:本大題共10小題,每小題5分,共50分。
1.B 2.D 3.A 4.A 5.B 6.C 7.C 8.C 9.A 10.B
二、填空題:本大題共5小題,每小題4分,共20分。
11.5 12. 13.
14.7 15.
三、解答題:本大題共6小題,共80分。
16.解:(I)由三角函數(shù)的定義可知
又為正三角形,
(Ⅱ)
圓的面積為。
該點(diǎn)落在
內(nèi)的概率
17.解:(I)依題意,每個(gè)月更新的車輛數(shù)構(gòu)成一個(gè)首項(xiàng)為,公差為
的等差數(shù)列,設(shè)第
個(gè)月更新的車輛數(shù)為
,則
該市的出租車總數(shù)
(輛)
(Ⅱ)依題意,每個(gè)月更新的車輛數(shù)構(gòu)成一個(gè)首項(xiàng)為,公比為1.1的等比數(shù)列,則第
個(gè)月更新的車輛數(shù),設(shè)至少需要
個(gè)月才能更新完畢,
個(gè)月更新的車輛總數(shù)
,
即,由參數(shù)數(shù)據(jù)可得
故以此速度進(jìn)行更新,至少需要37個(gè)月才能更新完該市所有的出租車
18.解(I),
為等腰直角三角形,
(Ⅱ)如圖建立空間直角坐標(biāo)系,則
設(shè)平面
的一個(gè)法向量為
,
則有 得
平面
的一個(gè)法向量
而的一個(gè)法向量
平面
與平面
所成的角的余弦值
(Ⅲ),
設(shè)平面的法向量為
,則有
平面
的一個(gè)法向量為
若要使得面
,則要
,即
解得,
當(dāng)
時(shí),
面
19.解法一:
(I)設(shè)橢圓方程為,由題意知
故橢圓方程為
(Ⅱ)由(I)得,所以
,設(shè)
的方程為
(
)
代入,得
設(shè)則
由,
當(dāng)
時(shí),有
成立。
(Ⅲ)在軸上存在定點(diǎn)
,使得
、
、
三點(diǎn)共線。
依題意知,直線BC的方程為
,
令,則
的方程為
、
在直線
上,
在
軸上存在定點(diǎn)
,使得
、
、
三點(diǎn)共線。
解法二:(I)同解法一。
(Ⅱ)由(I)得,所以
。
設(shè)的方程為
代入,得
設(shè)則
當(dāng)
時(shí),有
成立。
(Ⅲ)在軸上存在定點(diǎn)
,使得
、
、
三點(diǎn)共線。
設(shè)存在使得
、
、
三點(diǎn)共線,則
,
,
即
,
。
所以,存在,使得
、
、
三點(diǎn)共線。
20.解:(I)
當(dāng)時(shí),
由或
。
x
(0,1)
1
+
―
單調(diào)遞增
極大值
單調(diào)遞減
時(shí),
,無極小值。
(Ⅱ)存在單調(diào)遞減區(qū)間,
在
內(nèi)有解,即
在
內(nèi)有解。
若,則
,
在
單調(diào)遞增,不存在單調(diào)遞減區(qū)間;
若,則函數(shù)
的圖象是開口向上的拋物線,且恒過點(diǎn)(0,1),要
使在
內(nèi)有解,則應(yīng)有
或
,由于
,
;
若,則函數(shù)
的圖象是開口向下的拋物線,且恒過點(diǎn)(0,1),
在
內(nèi)一定有解。
綜上,或
。
(Ⅲ)依題意:,假設(shè)結(jié)論不成立,
則有
①―②,得
由③得,
即
設(shè),則
,
令
,
在(0,1)上為增函數(shù)。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com