中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

15.如圖.A.B.C分別為橢圓的頂點與焦點.若∠ABC=90°.則該橢圓的離心率為 . 查看更多

 

題目列表(包括答案和解析)

如圖,A、B、C分別為橢圓的頂點與焦點,若∠ABC=90°,則該橢圓的離心率為            .

查看答案和解析>>

如圖,A、B、C分別為橢圓的頂點與焦點,若∠ABC=90°,則該橢圓的離心率為            .

查看答案和解析>>

如圖,A、B、C分別為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的頂點和焦點,若∠ABC=90°,則該橢圓的離心率為
-1+
5
2
-1+
5
2

查看答案和解析>>

如圖,A、B、C分別為橢圓 =1(ab>0)的頂點與焦點,若∠ABC=90°,則該橢圓的離心率為(  )

A.    B.1-    C.-1    D.

查看答案和解析>>

如圖,A、B、C分別為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的頂點和焦點,若∠ABC=90°,則該橢圓的離心率為______.

查看答案和解析>>

一、選擇題

          20080422

          二、填空題

          13.2    14.   15.   16.①③④

          三、解答題

          17.解:(1)……………………3分

          ……………………6分

          (2)因為

          ………………9分

          ……………………12分

          文本框:  18.方法一:

          (1)證明:連結(jié)BD,

          ∵D分別是AC的中點,PA=PC=

          ∴PD⊥AC,

          ∵AC=2,AB=,BC=

          ∴AB2+BC2=AC2,

          ∴∠ABC=90°,即AB⊥BC.…………2分

          ∴BD=,

          ∵PD2=PA2―AD2=3,PB

          ∴PD2+BD2=PB2,

          ∴PD⊥BD,

          ∵ACBD=D

          ∴PD⊥平面ABC.…………………………4分

          (2)解:取AB的中點E,連結(jié)DE、PE,由E為AB的中點知DE//BC,

          ∵AB⊥BC,

          ∴AB⊥DE,

          ∵DE是直線PE的底面ABC上的射景

          ∴PE⊥AB

          ∴∠PED是二面角P―AB―C的平面角,……………………6分

          在△PED中,DE=∠=90°,

          ∴tan∠PDE=

          ∴二面角P―AB―C的大小是

          (3)解:設(shè)點E到平面PBC的距離為h.

          ∵VP―EBC=VE―PBC,

          ……………………10分

          在△PBC中,PB=PC=,BC=

          而PD=

          ∴點E到平面PBC的距離為……………………12分

          方法二:

          (1)同方法一:

          • 過點D作AB的平行線交BC于點F,以D為

            原點,DE為x軸,DF為y軸,

            DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

            則D(0,0,0),P(0,0,),

            E(),B=(

            設(shè)上平面PAB的一個法向量,

            則由

            這時,……………………6分

            顯然,是平面ABC的一個法向量.

            ∴二面角P―AB―C的大小是……………………8分

            (3)解:

            設(shè)平面PBC的一個法向量,

            是平面PBC的一個法向量……………………10分

            ∴點E到平面PBC的距離為………………12分

            19.解:(1)由題設(shè),當(dāng)價格上漲x%時,銷售總金額為:

               (2)

            ……………………3分

            當(dāng)

            當(dāng)x=50時,

            即該噸產(chǎn)品每噸的價格上漲50%時,銷售總最大.……………………6分

            (2)由(1)

            如果上漲價格能使銷假售總金額增加,

            則有……………………8分

            即x>0時,

            注意到m>0

              ∴   ∴

            ∴m的取值范圍是(0,1)…………………………12分

            20.解(1)由已知,拋物線,焦點F的坐標(biāo)為F(0,1)………………1分

            當(dāng)l與y軸重合時,顯然符合條件,此時……………………3分

            當(dāng)l不與y軸重合時,要使拋物線的焦點F與原點O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過點()設(shè)l的斜率為k,則直線l的方程為

            由已知可得………5分

            解得無意義.

            因此,只有時,拋物線的焦點F與原點O到直線l的距離相等.……7分

            (2)由已知可設(shè)直線l的方程為……………………8分

            則AB所在直線為……………………9分

            代入拋物線方程………………①

            的中點為

            代入直線l的方程得:………………10分

            又∵對于①式有:

            解得m>-1,

            l在y軸上截距的取值范圍為(3,+)……………………12分

            21.解:(1)由

            ……………………3分

            又由已知

            ∴數(shù)列是以3為首項,以-1為公差的等差數(shù)列,且…………6分

            (2)∵……………………8分

            …………①

            …………②………………10分

            ②―①得

            ……………………12分

            22.解:(1)和[0,2]上有相反的單調(diào)性,

            的一個極值點,故

               (2)令

            因為和[4,5]上有相反的單調(diào)性,

            和[4,5]上有相反的符號,

            ……………………7分

            假設(shè)在點M在點M的切線斜率為3b,則

            故不存在點M在點M的切線斜率為3b………………9分

               (3)∵的圖象過點B(2,0),

            設(shè),依題意可令

            ……………………12分

            ∴當(dāng)

            ……………………14分

             

          • <cite id="m0v94"></cite><blockquote id="m0v94"></blockquote>