中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

18.如圖.P―ABC中.D是AC的中點.PA=PB=PC= (1)求證:PD⊥平面ABC, (2)求二面角P―AB―C的大小, (3)求AB的中點E到平面PBC的距離. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)
如圖,P是正三角形ABC所在平面外一點,M、N分別是AB和PC的中點,且PA=PB=PC=AB=a。

(1)求證:MN是AB和PC的公垂線
(2)求異面直線AB和PC之間的距離

查看答案和解析>>

(本小題滿分12分)如圖,在△ABC中,∠ABC=90°,AB=,BC=1,P為△ABC內(nèi)一點,∠BPC=90°

(1)若PB=,求PA;

(2)若∠APB=150°,求tan∠PBA

 

查看答案和解析>>

(本小題滿分12分)

如圖,P是正三角形ABC所在平面外一點,M、N分別是AB和PC的中點,且PA=PB=PC=AB=a。

(1)求證:MN是AB和PC的公垂線

(2)求異面直線AB和PC之間的距離

 

 

查看答案和解析>>

(本小題滿分12分)如圖,在△ABC中,∠ABC=90°,AB=,BC=1,P為△ABC內(nèi)一點,∠BPC=90°

(1)若PB=,求PA;
(2)若∠APB=150°,求tan∠PBA

查看答案和解析>>

(本小題滿分12分)如圖,P是正三角形ABC所在平面外一點,M、N分別是AB和PC的中點,且PA=PB=PC=AB=a。

(1)求證:MN是AB和PC的公垂線

(2)求異面直線AB和PC之間的距離

查看答案和解析>>

一、選擇題

20080422

二、填空題

13.2    14.   15.   16.①③④

三、解答題

17.解:(1)……………………3分

……………………6分

(2)因為

………………9分

……………………12分

文本框:  18.方法一:

(1)證明:連結BD,

∵D分別是AC的中點,PA=PC=

∴PD⊥AC,

∵AC=2,AB=,BC=

∴AB2+BC2=AC2

∴∠ABC=90°,即AB⊥BC.…………2分

∴BD=

∵PD2=PA2―AD2=3,PB

∴PD2+BD2=PB2,

∴PD⊥BD,

∵ACBD=D

∴PD⊥平面ABC.…………………………4分

(2)解:取AB的中點E,連結DE、PE,由E為AB的中點知DE//BC,

∵AB⊥BC,

∴AB⊥DE,

∵DE是直線PE的底面ABC上的射景

∴PE⊥AB

∴∠PED是二面角P―AB―C的平面角,……………………6分

在△PED中,DE=∠=90°,

∴tan∠PDE=

∴二面角P―AB―C的大小是

(3)解:設點E到平面PBC的距離為h.

∵VP―EBC=VE―PBC,

……………………10分

在△PBC中,PB=PC=,BC=

而PD=

∴點E到平面PBC的距離為……………………12分

方法二:

(1)同方法一:

          1. 過點D作AB的平行線交BC于點F,以D為

            原點,DE為x軸,DF為y軸,

            DP為z軸,建立如圖所示的空間直角坐標系.

            則D(0,0,0),P(0,0,),

            E(),B=(

            上平面PAB的一個法向量,

            則由

            這時,……………………6分

            顯然,是平面ABC的一個法向量.

            ∴二面角P―AB―C的大小是……………………8分

            (3)解:

            平面PBC的一個法向量,

            是平面PBC的一個法向量……………………10分

            ∴點E到平面PBC的距離為………………12分

            19.解:(1)由題設,當價格上漲x%時,銷售總金額為:

               (2)

            ……………………3分

            當x=50時,

            即該噸產(chǎn)品每噸的價格上漲50%時,銷售總最大.……………………6分

            (2)由(1)

            如果上漲價格能使銷假售總金額增加,

            則有……………………8分

            即x>0時,

            注意到m>0

              ∴   ∴

            ∴m的取值范圍是(0,1)…………………………12分

            20.解(1)由已知,拋物線,焦點F的坐標為F(0,1)………………1分

            l與y軸重合時,顯然符合條件,此時……………………3分

            l不與y軸重合時,要使拋物線的焦點F與原點O到直線l的距離相等,當且僅當直線l通過點()設l的斜率為k,則直線l的方程為

            由已知可得………5分

            解得無意義.

            因此,只有時,拋物線的焦點F與原點O到直線l的距離相等.……7分

            (2)由已知可設直線l的方程為……………………8分

            則AB所在直線為……………………9分

            代入拋物線方程………………①

            的中點為

            代入直線l的方程得:………………10分

            又∵對于①式有:

            解得m>-1,

            l在y軸上截距的取值范圍為(3,+)……………………12分

            21.解:(1)由

            ……………………3分

            又由已知

            ∴數(shù)列是以3為首項,以-1為公差的等差數(shù)列,且…………6分

            (2)∵……………………8分

            …………①

            …………②………………10分

            ②―①得

            ……………………12分

            22.解:(1)和[0,2]上有相反的單調(diào)性,

            的一個極值點,故

               (2)令

            因為和[4,5]上有相反的單調(diào)性,

            和[4,5]上有相反的符號,

            ……………………7分

            假設在點M在點M的切線斜率為3b,則

            故不存在點M在點M的切線斜率為3b………………9分

               (3)∵的圖象過點B(2,0),

            ,依題意可令

            ……………………12分

            ∴當

            ……………………14分