中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

A.4 B.2 C.2 D. 查看更多

 

題目列表(包括答案和解析)

  

A.4    B.2    C.-2    D.0

 

查看答案和解析>>

A.0         B.1              C.2                  D.4

 

查看答案和解析>>

=
[     ]
A.1
B.2
C.3
D.4

查看答案和解析>>

                                                                         (    )

       A.4       B.3    C.2         D.1

查看答案和解析>>

          (    )

    A.4       B.3    C.2        D.1

 

查看答案和解析>>

一、選擇題

 1-6  C  A  B  B   B   D    7-12   B  C  B  B  B  C

二、填空 

 13.  4     14.      15. 2    16.

三、解答題

17.(1)解:由

       有    ……6分

,  ……8分

由余弦定理

      當(dāng)……12分

∴PB∥平面EFG. ………………………………3分

   (2)解:取BC的中點(diǎn)M,連結(jié)GM、AM、EM,則GM//BD,

所成的角.………………4分

     在Rt△MAE中, ,

     同理,…………………………5分

又GM=,

∴在△MGE中,

………………6分

故異面直線EG與BD所成的角為arccos,………………………………7分

   (3)假設(shè)在線段CD上存在一點(diǎn)Q滿足題設(shè)條件,

<li id="fd6qa"><code id="fd6qa"></code></li><strike id="fd6qa"></strike>
      • <strong id="fd6qa"></strong>
        <ul id="fd6qa"><li id="fd6qa"></li></ul>

        ∵ABCD是正方形,△PAD是直角三角形,且PA=AD=2,

        ∴AD⊥AB,AD⊥PA.

        又AB∩PA=A,

        ∴AD⊥平面PAB. ……………………………………8分

        又∵E,F(xiàn)分別是PA,PD中點(diǎn),

        ∴EF∥AD,∴EF⊥平面PAB.

        又EF面EFQ,

        ∴面EFQ⊥面PAB. …………………………………9分

        過A作AT⊥ER于T,則AT⊥平面EFQ,

        ∴AT就是點(diǎn)A到平面EFQ的距離. ……………………………………………10分

        設(shè),

            在, …………………………11分

            解得

            故存在點(diǎn)Q,當(dāng)CQ=時,點(diǎn)A到平面EFQ的距離為0.8. ……………………… 12分

        解法二:建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,

        則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

                     (1)證明:

                       …………………………1分

                      設(shè),

                      即,

                     

                       ……………2分

                     

                      ∴PB∥平面EFG. …………………………………………………………………… 3分

                     (2)解:∵,…………………………………………4分

                      ,……………………… 6分

                   

                  20.(本小題滿分12分)

                  解:(1)數(shù)列{an}的前n項(xiàng)和

                                                        …………2分

                  ,

                                             …………3分

                  是正項(xiàng)等比數(shù)列,

                   

                  ,                                               …………4分

                  公比,                                                                                    …………5分

                  數(shù)列                                  …………6分

                     (2)解法一:

                                          …………8分

                  ,

                  當(dāng),                                      …………10分

                  故存在正整數(shù)M,使得對一切M的最小值為2…………12分

                     (2)解法二:

                  ,         …………8分

                  ,

                  函數(shù)…………10分

                  對于

                  故存在正整數(shù)M,使得對一切恒成立,M的最小值為2…………12

                  21.解:  1)設(shè)橢圓的焦距為2c,因?yàn)?sub>,所以有,故有。從而橢圓C的方程可化為:      ①                     ………2分

                  易知右焦點(diǎn)F的坐標(biāo)為(),

                  據(jù)題意有AB所在的直線方程為:   ②                     ………3分

                  由①,②有:         ③

                  設(shè),弦AB的中點(diǎn),由③及韋達(dá)定理有:

                   

                  所以,即為所求。                                    ………5分

                  2)顯然可作為平面向量的一組基底,由平面向量基本定理,對于這一平面內(nèi)的向量,有且只有一對實(shí)數(shù),使得等式成立。設(shè),由1)中各點(diǎn)的坐標(biāo)有:

                  ,所以

                  。                                   ………7分

                  又點(diǎn)在橢圓C上,所以有整理為。           ④

                  由③有:。所以

                     ⑤

                  又A?B在橢圓上,故有                ⑥

                  將⑤,⑥代入④可得:。                                ………11分

                  對于橢圓上的每一個點(diǎn),總存在一對實(shí)數(shù),使等式成立,而

                  在直角坐標(biāo)系中,取點(diǎn)P(),設(shè)以x軸正半軸為始邊,以射線OP為終邊的角為,顯然 。

                  也就是:對于橢圓C上任意一點(diǎn)M ,總存在角∈R)使等式:=cos+sin成立。                                                 ………12分

                   

                  22.  …1分

                  上無極值點(diǎn)      ……………………………2分

                  當(dāng)時,令,隨x的變化情況如下表:

                  x

                  0

                  遞增

                  極大值

                  遞減

                  從上表可以看出,當(dāng)時,有唯一的極大值點(diǎn)

                  (2)解:當(dāng)時,處取得極大值

                  此極大值也是最大值。

                  要使恒成立,只需

                  的取值范圍是     …………………………………………………8分

                  (3)證明:令p=1,由(2)知:

                          …………………………………………………………10分

                           ……………………………………………14分

                  <ul id="fd6qa"></ul>