中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

15.若雙曲線-=1的漸近線與方程為的圓相切.則此雙曲線的離心率為 . 查看更多

 

題目列表(包括答案和解析)

若雙曲線=1(a>0,b>0)的漸近線與拋物線yx2+2相切,則此雙曲線的漸近線方程為

A.y=±x  B.y=±2x  C.y=±x  D.y=±x

查看答案和解析>>

若雙曲線=1(a>0,b>0)的漸近線與拋物線yx2+2相切,則此雙曲線的漸近線方程為

A.y=±x  B.y=±2x  C.y=±x  D. y=±x

查看答案和解析>>

設雙曲線=1的兩個焦點分別為F1、F2,離心率為2.

(Ⅰ)求雙曲線的漸近線方程;

(Ⅱ)過點N(1,0)能否作出直線l,使l與雙曲線C交于P、Q兩點,且·=0,若存在,求出直線方程,若不存在,說明理由.

查看答案和解析>>

設雙曲線=1(a>0,b>0)與拋物線y2=8x有一個公共的焦點F,兩曲線的一個交點為P.若|PF|=5,則雙曲線的漸近線方程為________.

查看答案和解析>>

已知雙曲線=1(a>0,b>0)與拋物線y2=8x有一個公共的焦點F,且兩曲線的一個交點為P,若|PF|=5,則雙曲線的漸近線方程為________.

查看答案和解析>>

一、選擇題

 1-6  C  A  B  B   B   D    7-12   B  C  B  B  B  C

二、填空 

 13.  4     14.      15. 2    16.

三、解答題

17.(1)解:由

       有    ……6分

,  ……8分

由余弦定理

      當……12分

∴PB∥平面EFG. ………………………………3分

   (2)解:取BC的中點M,連結GM、AM、EM,則GM//BD,

所成的角.………………4分

     在Rt△MAE中, ,

     同理,…………………………5分

又GM=,

∴在△MGE中,

………………6分

故異面直線EG與BD所成的角為arccos,………………………………7分

   (3)假設在線段CD上存在一點Q滿足題設條件,

    ∵ABCD是正方形,△PAD是直角三角形,且PA=AD=2,

    ∴AD⊥AB,AD⊥PA.

    又AB∩PA=A,

    ∴AD⊥平面PAB. ……………………………………8分

    又∵E,F分別是PA,PD中點,

    ∴EF∥AD,∴EF⊥平面PAB.

    又EF面EFQ,

    ∴面EFQ⊥面PAB. …………………………………9分

    過A作AT⊥ER于T,則AT⊥平面EFQ,

    ∴AT就是點A到平面EFQ的距離. ……………………………………………10分

        在, …………………………11分

        解得

        故存在點Q,當CQ=時,點A到平面EFQ的距離為0.8. ……………………… 12分

    解法二:建立如圖所示的空間直角坐標系A-xyz,

    則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

       (1)證明:

         …………………………1分

        設,

        即,

       

         ……………2分

       

        ∴PB∥平面EFG. …………………………………………………………………… 3分

       (2)解:∵,…………………………………………4分

        ,……………………… 6分

     

    20.(本小題滿分12分)

    解:(1)數列{an}的前n項和

                                          …………2分

    ,

                               …………3分

    是正項等比數列,

     

    ,                                               …………4分

    公比,                                                                                    …………5分

    數列                                  …………6分

       (2)解法一:

                            …………8分

    ,

    ,                                      …………10分

    故存在正整數M,使得對一切M的最小值為2…………12分

       (2)解法二:,

    ,         …………8分

    ,

    函數…………10分

    對于

    故存在正整數M,使得對一切恒成立,M的最小值為2…………12

    21.解:  1)設橢圓的焦距為2c,因為,所以有,故有。從而橢圓C的方程可化為:      ①                     ………2分

    易知右焦點F的坐標為(),

    據題意有AB所在的直線方程為:   ②                     ………3分

    由①,②有:         ③

    ,弦AB的中點,由③及韋達定理有:

     

    所以,即為所求。                                    ………5分

    2)顯然可作為平面向量的一組基底,由平面向量基本定理,對于這一平面內的向量,有且只有一對實數,使得等式成立。設,由1)中各點的坐標有:

    ,所以

    。                                   ………7分

    又點在橢圓C上,所以有整理為。           ④

    由③有:。所以

       ⑤

    又A?B在橢圓上,故有                ⑥

    將⑤,⑥代入④可得:。                                ………11分

    對于橢圓上的每一個點,總存在一對實數,使等式成立,而

    在直角坐標系中,取點P(),設以x軸正半軸為始邊,以射線OP為終邊的角為,顯然 。

    也就是:對于橢圓C上任意一點M ,總存在角∈R)使等式:=cos+sin成立。                                                 ………12分

     

    22.  …1分

    上無極值點      ……………………………2分

    時,令,隨x的變化情況如下表:

    x

    0

    遞增

    極大值

    遞減

    從上表可以看出,當時,有唯一的極大值點

    (2)解:當時,處取得極大值

    此極大值也是最大值。

    要使恒成立,只需

    的取值范圍是     …………………………………………………8分

    (3)證明:令p=1,由(2)知:

            …………………………………………………………10分

             ……………………………………………14分