中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

(2)對(duì)于橢圓C上任意一點(diǎn)M .試證:總存在角(∈R)使等式:=cos+sin成立. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)圓錐曲線上任意兩點(diǎn)連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對(duì)稱軸,我們將該弦稱之為曲線的垂軸弦.已知點(diǎn)P(x0,y0)、M(m,n)是圓錐曲線C上不與頂點(diǎn)重合的任意兩點(diǎn),MN是垂直于x軸的一條垂軸弦,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0).
(1)試用x0,y0,m,n的代數(shù)式分別表示xE和xF;
(2)若C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
(如圖),求證:xE•xF是與MN和點(diǎn)P位置無(wú)關(guān)的定值;
(3)請(qǐng)選定一條除橢圓外的圓錐曲線C,試探究xE和xF經(jīng)過(guò)某種四則運(yùn)算(加、減、乘、除),其結(jié)果是否是與MN和點(diǎn)P位置無(wú)關(guān)的定值,寫出你的研究結(jié)論并證明.

查看答案和解析>>

圓錐曲線上任意兩點(diǎn)連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對(duì)稱軸,我們將該弦稱之為曲線的垂軸弦.已知點(diǎn)P(x,y)、M(m,n)是圓錐曲線C上不與頂點(diǎn)重合的任意兩點(diǎn),MN是垂直于x軸的一條垂軸弦,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0).
(1)試用x,y,m,n的代數(shù)式分別表示xE和xF;
(2)若C的方程為(如圖),求證:xE•xF是與MN和點(diǎn)P位置無(wú)關(guān)的定值;
(3)請(qǐng)選定一條除橢圓外的圓錐曲線C,試探究xE和xF經(jīng)過(guò)某種四則運(yùn)算(加、減、乘、除),其結(jié)果是否是與MN和點(diǎn)P位置無(wú)關(guān)的定值,寫出你的研究結(jié)論并證明.

查看答案和解析>>

圓錐曲線上任意兩點(diǎn)連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對(duì)稱軸,我們將該弦稱之為曲線的垂軸弦.已知點(diǎn)P(x,y)、M(m,n)是圓錐曲線C上不與頂點(diǎn)重合的任意兩點(diǎn),MN是垂直于x軸的一條垂軸弦,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0).
(1)試用x,y,m,n的代數(shù)式分別表示xE和xF
(2)若C的方程為(如圖),求證:xE•xF是與MN和點(diǎn)P位置無(wú)關(guān)的定值;
(3)請(qǐng)選定一條除橢圓外的圓錐曲線C,試探究xE和xF經(jīng)過(guò)某種四則運(yùn)算(加、減、乘、除),其結(jié)果是否是與MN和點(diǎn)P位置無(wú)關(guān)的定值,寫出你的研究結(jié)論并證明.

查看答案和解析>>

設(shè)F1、F2分別為橢圓C:數(shù)學(xué)公式的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,數(shù)學(xué)公式)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo).
(2)已知圓心在原點(diǎn)的圓具有性質(zhì):若M、N是圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)P是圓上的任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記作KPM、KPN那么KPMKPN=-1.試對(duì)橢圓數(shù)學(xué)公式寫出類似的性質(zhì),并加以證明.

查看答案和解析>>

設(shè)F1、F2分別為橢圓C:的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo).
(2)已知圓心在原點(diǎn)的圓具有性質(zhì):若M、N是圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)P是圓上的任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記作KPM、KPN那么KPMKPN=-1.試對(duì)橢圓寫出類似的性質(zhì),并加以證明.

查看答案和解析>>

一、選擇題

 1-6  C  A  B  B   B   D    7-12   B  C  B  B  B  C

二、填空 

 13.  4     14.      15. 2    16.

三、解答題

17.(1)解:由

       有    ……6分

,  ……8分

由余弦定理

      當(dāng)……12分

∴PB∥平面EFG. ………………………………3分

   (2)解:取BC的中點(diǎn)M,連結(jié)GM、AM、EM,則GM//BD,

所成的角.………………4分

     在Rt△MAE中, ,

     同理,…………………………5分

又GM=

∴在△MGE中,

………………6分

故異面直線EG與BD所成的角為arccos,………………………………7分

   (3)假設(shè)在線段CD上存在一點(diǎn)Q滿足題設(shè)條件,

<kbd id="1aoji"><option id="1aoji"></option></kbd>
        <pre id="1aoji"><menu id="1aoji"></menu></pre>
        1. ∵ABCD是正方形,△PAD是直角三角形,且PA=AD=2,

          ∴AD⊥AB,AD⊥PA.

          又AB∩PA=A,

          ∴AD⊥平面PAB. ……………………………………8分

          又∵E,F(xiàn)分別是PA,PD中點(diǎn),

          ∴EF∥AD,∴EF⊥平面PAB.

          又EF面EFQ,

          ∴面EFQ⊥面PAB. …………………………………9分

          過(guò)A作AT⊥ER于T,則AT⊥平面EFQ,

          ∴AT就是點(diǎn)A到平面EFQ的距離. ……………………………………………10分

          設(shè)

              在, …………………………11分

              解得

              故存在點(diǎn)Q,當(dāng)CQ=時(shí),點(diǎn)A到平面EFQ的距離為0.8. ……………………… 12分

          解法二:建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,

          則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

                •    (1)證明:

                       …………………………1分

                      設(shè)

                      即,

                     

                       ……………2分

                     

                      ∴PB∥平面EFG. …………………………………………………………………… 3分

                     (2)解:∵,…………………………………………4分

                      ,……………………… 6分

                   

                  20.(本小題滿分12分)

                  解:(1)數(shù)列{an}的前n項(xiàng)和,

                                                        …………2分

                  ,

                                             …………3分

                  是正項(xiàng)等比數(shù)列,

                   

                  ,                                               …………4分

                  公比,                                                                                    …………5分

                  數(shù)列                                  …………6分

                     (2)解法一:,

                                          …………8分

                  當(dāng),                                      …………10分

                  故存在正整數(shù)M,使得對(duì)一切M的最小值為2…………12分

                     (2)解法二:,

                  ,         …………8分

                  函數(shù)…………10分

                  對(duì)于

                  故存在正整數(shù)M,使得對(duì)一切恒成立,M的最小值為2…………12

                  21.解:  1)設(shè)橢圓的焦距為2c,因?yàn)?sub>,所以有,故有。從而橢圓C的方程可化為:      ①                     ………2分

                  易知右焦點(diǎn)F的坐標(biāo)為(),

                  據(jù)題意有AB所在的直線方程為:   ②                     ………3分

                  由①,②有:         ③

                  設(shè),弦AB的中點(diǎn),由③及韋達(dá)定理有:

                   

                  所以,即為所求。                                    ………5分

                  2)顯然可作為平面向量的一組基底,由平面向量基本定理,對(duì)于這一平面內(nèi)的向量,有且只有一對(duì)實(shí)數(shù),使得等式成立。設(shè),由1)中各點(diǎn)的坐標(biāo)有:

                  ,所以

                  。                                   ………7分

                  又點(diǎn)在橢圓C上,所以有整理為。           ④

                  由③有:。所以

                     ⑤

                  又A?B在橢圓上,故有                ⑥

                  將⑤,⑥代入④可得:。                                ………11分

                  對(duì)于橢圓上的每一個(gè)點(diǎn),總存在一對(duì)實(shí)數(shù),使等式成立,而

                  在直角坐標(biāo)系中,取點(diǎn)P(),設(shè)以x軸正半軸為始邊,以射線OP為終邊的角為,顯然

                  也就是:對(duì)于橢圓C上任意一點(diǎn)M ,總存在角∈R)使等式:=cos+sin成立。                                                 ………12分

                   

                  22.  …1分

                  上無(wú)極值點(diǎn)      ……………………………2分

                  當(dāng)時(shí),令,隨x的變化情況如下表:

                  x

                  0

                  遞增

                  極大值

                  遞減

                  從上表可以看出,當(dāng)時(shí),有唯一的極大值點(diǎn)

                  (2)解:當(dāng)時(shí),處取得極大值

                  此極大值也是最大值。

                  要使恒成立,只需

                  的取值范圍是     …………………………………………………8分

                  (3)證明:令p=1,由(2)知:

                          …………………………………………………………10分

                           ……………………………………………14分

                  <pre id="1aoji"></pre>