中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過定點P,則點P的坐標(biāo)為
(2,2)

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

1―5 ADBBA    6―10 DDCBC    11―12 CA

二、填空題:本大題共4小題,每小題5分,共20分。

13.300    14.    15.    16.②④

三、解答題:本大題共6小題,滿分70分。

17.(本小題滿分10分)

   (I)解:

時,

   ………………2分

   ………………4分

, 

  ………………5分

   (II)解:

18.(本小題滿分12分)

   (I)解:

   (II)解:

由(I)知:

   (III)解:

  • <del id="rbzdc"><option id="rbzdc"></option></del>
      <wbr id="rbzdc"><cite id="rbzdc"></cite></wbr>

          1. <meter id="rbzdc"><span id="rbzdc"></span></meter>

              19.(本小題滿分12分)

              解法一:

                 (I)證明

              如圖,連結(jié)AC,AC交BD于點G,連結(jié)EG。

              ∵ 底面ABCD是正方形,

              ∴ G為AC的中點.

              又E為PC的中點,

              ∴EG//PA。

              ∵EG平面EDB,PA平面EDB,

              ∴PA//平面EDB   ………………4分

                 (II)證明:

              ∵ PD⊥底面ABCD,∴PD⊥DB,PD⊥DC,PD⊥DB。

              又∵BC⊥DC,PD∩DC=D,

              ∴BC⊥平面PDC。

              ∴PC是PB在平面PDC內(nèi)的射影。

              ∵PD⊥DC,PD=DC,點E是PC的中點,

              ∴DE⊥PC。

              由三垂線定理知,DE⊥PB。

              ∵DE⊥PB,EF⊥PB,DE∩EF=E,

              ∴PB⊥平面EFD。   …………………………8分

                 (III)解:

              ∵PB⊥平面EFD,

              ∴PB⊥FD。

              又∵EF⊥PB,F(xiàn)D∩EF=F,

              ∴∠EFD就是二面角C―PB―D的平面角!10分

              ∵PD=DC=BC=2,

              ∴PC=DB=

              ∵PD⊥DB,

              由(II)知:DE⊥PC,DE⊥PB,PC∩PB=P,

              ∴DE⊥平面PBC。

              ∵EF平面PBC,

              ∴DE⊥EF。

              ∴∠EFD=60°。

              故所求二面角C―PB―D的大小為60°。  ………………12分

              解法二:

              如圖,以點D為坐標(biāo)原點,DA、DC、DP所在直線分別為x軸、y軸、z軸,

              建立空間直角坐標(biāo)系,得以下各點坐標(biāo):D(0,0,0),A(2,0,0),B(2,2,0),

              C(0,2,0),P(0,0,2)   ………………1分

                 (I)證明:

              連結(jié)AC,AC交BD于點G,連結(jié)EG。

              ∵ 底面ABCD是正方形,

              ∴ G為AC的中點.G點坐標(biāo)為(1,1,0)。

            1. 高考資源網(wǎng)www.ks5u.com

              ∴PA//平面EDB   ………………4分

                 (II)證明:

                 (III)解:

              ∵PB⊥平面EFD,

              ∴PB⊥FD。

              又∵EF⊥PB,F(xiàn)D∩EF=F,

              ∴∠EFD就是二面角C―PB―D的平面角。………………10分

              ∴∠EFD=60°。

              故所求二面角C―PB―D的大小為60°。  ………………12分

              20.(本小題滿分12分)

                 (I)解:

              設(shè) “從甲盒內(nèi)取出的2個球均為黑球”為事件,“從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件相互獨立,所以取出的4個球均為黑球的概率為

                 ………………2分

              ,

              ∴取出的4個球均為黑球的概率為   ………………5分

                 (II)解:設(shè)“從甲盒內(nèi)取出的2個球均為黑球;從乙盒內(nèi)取出的2個球中,1個是黑球,1個是紅球”為事件,“從乙盒內(nèi)取出的2個球均為黑球;從甲盒內(nèi)取出的2個球中,1個是黑球,1個是紅球為事件D。

                  ∴取出的“4個球中恰有3個黑球”為事件C+D。

              ∵事件C,D互斥,

              ∴取出的4個球中恰有3個黑球的概率為

              21.(本小題滿分12分)

                 (I)解:

              由題意設(shè)雙曲線S的方程為   ………………2分

              c為它的半焦距,

               

                 (II)解:

              22.(本小題滿分12分)

                 (I)解:

                 (II)解:

                 (III)解:

                 

               

              w.w.w.k.s.5.u.c.o.m

              www.ks5u.com

              <sub id="rbzdc"></sub>
            2. <blockquote id="rbzdc"></blockquote>

                • <u id="rbzdc"><strike id="rbzdc"><dl id="rbzdc"></dl></strike></u>