題目列表(包括答案和解析)
某地最近出臺一項機動車駕照考試規(guī)定:每位考試者一年之內(nèi)最多有次參加考試的機會,一旦某次考試通過,便可領(lǐng)取駕照,不再參加以后的考試,否則就一直考到第
次為止.如果李明決定參加駕照考試,設(shè)他每次參加考試通過的概率依次為
.求在一年內(nèi)李明參加駕照考試次數(shù)
的分布列和
的期望,并求李明在一年內(nèi)領(lǐng)到駕照的概率.
解答題:解答應(yīng)寫出必要的文字說明、證明過程或演算步驟
某地區(qū)出臺了一項機動車駕照考試規(guī)定:每位參加考試人員在一年內(nèi)最多有三次參加考試的機會,一旦某次考試通過,便可領(lǐng)取駕照,不再參加以后的考試,否則一直考到第三次為止.王先生決定參加駕照考試,如果他參加第一、二、三次考試能通過的概率依次為0.6、0.7、0.8,求王先生在一年內(nèi)能領(lǐng)取駕照的概率
解答題:解答應(yīng)寫出必要的文字說明、證明過程或演算步驟
某地區(qū)出臺了一項機動車駕照考試規(guī)定:每位參加考試人員在一年內(nèi)最多有三次參加考試的機會,一旦某次考試通過,便可領(lǐng)取駕照,不再參加以后的考試,否則一直考到第三次為止.王先生決定參加駕照考試,如果他參加第一、二、三次考試能通過的概率依次為0.6、0.7、0.8,求王先生在一年內(nèi)能領(lǐng)取駕照的概率.
一、 選擇題(每小題5分,共60分)
BBDACA CDBDBA
二、填空題(每小題4分,共16分)
13. 14.
15.
16.
三、解答題
17.(本小題滿分12分)
解:(Ⅰ)∵,
由,得
兩邊平方:=
,∴
=
………………6分
(Ⅱ)∵,
∴,解得
,
又∵,
∴
,
∴,
,
設(shè)的夾角為
,則
,∴
即的夾角為
. …………… 12分
18. (本小題滿分12分)
解:(Ⅰ)小王在第三次考試中通過而領(lǐng)到駕照的概率為:
………………………6分
(Ⅱ)小王在一年內(nèi)領(lǐng)到駕照的概率為:
………………12分
19.(本小題滿分12分)
(Ⅰ)證明:由已知得,所以
,即
,
又,
,∴
,
平面
∴平面平面
.……………………………4分(文6分)
(Ⅱ)解:設(shè)的中點為
,連接
,則
∥
,
∴是異面直線
和
所成的角或其補角
由(Ⅰ)知,在
中,
,
,
∴.
所以異面直線和
所成的角為
.…………………8分(文12分)
20.(本小題滿分12分)
解:(Ⅰ)∵
據(jù)題意,,
∴ ………………………4分
(Ⅱ)由(Ⅰ)知,
∴
則
∴對于,
最小值為
………………… 8分
∵的對稱軸為
,且拋物線開口向下,
∴時,
最小值為
與
中較小的,
∵,
∴當時,
的最小值是-7.
∴的最小值為-11. ………………………12分
21.(本小題滿分12分)
解:(Ⅰ)∵
∴
∴
令,則
,∴
,∴
∴.……………6分
(Ⅱ)證明:由(Ⅰ)知:
記
用錯位相減法求和得:
令,
∵
∴數(shù)列是遞減數(shù)列,∴
,
∴.
即.………………………12分
(由證明也給滿分)
22.(本小題滿分14分)
解:(Ⅰ)①當直線軸時,
則,此時
,∴
.
(不討論扣1分)
②當直線不垂直于
軸時,
,設(shè)雙曲線的右準線為
,
作于
,作
于
,作
于
且交
軸于
根據(jù)雙曲線第二定義有:,
而到準線
的距離為
.
由,得:
,
∴,∴
,∵此時
,∴
綜上可知.………………………………………7分
(Ⅱ)設(shè):
,代入雙曲線方程得
∴
令,則
,且
代入上面兩式得:
①
②
由①②消去得
即 ③
由有:
,綜合③式得
由得
,解得
∴的取值范圍為
…………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com