題目列表(包括答案和解析)
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,
于是
,所以
(2) ,
設(shè)平面PCD的法向量
,
則,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得
.
由,故
所以,,解得
,即
.
解法二:(1)證明:由,可得
,又由
,
,故
.又
,所以
.
(2)如圖,作于點(diǎn)H,連接DH.由
,
,可得
.
因此,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,
因此所以二面角
的正弦值為
.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故
在中,由
,
,
可得.由余弦定理,
,
所以.
加密密鑰密碼 |
發(fā)送 |
解密密鑰密碼 |
已知是公差為d的等差數(shù)列,
是公比為q的等比數(shù)列
(Ⅰ)若 ,是否存在
,有
?請(qǐng)說(shuō)明理由;
(Ⅱ)若(a、q為常數(shù),且aq
0)對(duì)任意m存在k,有
,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數(shù)列
中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中
的一項(xiàng),請(qǐng)證明.
【解析】第一問(wèn)中,由得
,整理后,可得
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)中當(dāng)時(shí),則
即
,其中
是大于等于
的整數(shù)
反之當(dāng)時(shí),其中
是大于等于
的整數(shù),則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)中設(shè)當(dāng)
為偶數(shù)時(shí),
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時(shí),
式不成立。由
式得
,整理
當(dāng)時(shí),符合題意。當(dāng)
,
為奇數(shù)時(shí),
結(jié)合二項(xiàng)式定理得到結(jié)論。
解(1)由得
,整理后,可得
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)當(dāng)時(shí),則
即
,其中
是大于等于
的整數(shù)反之當(dāng)
時(shí),其中
是大于等于
的整數(shù),則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)設(shè)當(dāng)
為偶數(shù)時(shí),
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時(shí),
式不成立。由
式得
,整理
當(dāng)時(shí),符合題意。當(dāng)
,
為奇數(shù)時(shí),
由
,得
當(dāng)
為奇數(shù)時(shí),此時(shí),一定有
和
使上式一定成立。
當(dāng)
為奇數(shù)時(shí),命題都成立
已知
(1)求函數(shù)在
上的最小值
(2)對(duì)一切的恒成立,求實(shí)數(shù)a的取值范圍
(3)證明對(duì)一切,都有
成立
【解析】第一問(wèn)中利用
當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)
,即
時(shí),
,
第二問(wèn)中,,則
設(shè)
,
則,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷?duì)一切
,
恒成立,
第三問(wèn)中問(wèn)題等價(jià)于證明,
,
由(1)可知,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè),
,則
,易得
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切
,都有
成立
解:(1)當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)
,即
時(shí),
,
…………4分
(2),則
設(shè)
,
則,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷?duì)一切
,
恒成立,
…………9分
(3)問(wèn)題等價(jià)于證明,
,
由(1)可知,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè),
,則
,易得
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切
,都有
成立
已知,
是橢圓
左右焦點(diǎn),它的離心率
,且被直線
所截得的線段的中點(diǎn)的橫坐標(biāo)為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)是其橢圓上的任意一點(diǎn),當(dāng)
為鈍角時(shí),求
的取值范圍。
【解析】解:因?yàn)榈谝粏?wèn)中,利用橢圓的性質(zhì)由得
所以橢圓方程可設(shè)為:
,然后利用
得得
橢圓方程為
第二問(wèn)中,當(dāng)為鈍角時(shí),
,
得
所以
得
解:(Ⅰ)由得
所以橢圓方程可設(shè)為:
3分
得得
橢圓方程為
3分
(Ⅱ)當(dāng)為鈍角時(shí),
,
得
3分
所以
得
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com