中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

坐標系與參數(shù)方程已知圓系的方程為x2+y2-2axCos-2aySin=0 (1)求圓系圓心的軌跡方程; (2)證明圓心軌跡與動圓相交所得的公共弦長為定值; 查看更多

 

題目列表(包括答案和解析)

(10分)坐標系與參數(shù)方程已知圓系的方程為x2+y2-2axCos-2aySin=0(a>0)

   (1)求圓系圓心的軌跡方程;

   (2)證明圓心軌跡與動圓相交所得的公共弦長為定值;

查看答案和解析>>

坐標系與參數(shù)方程已知圓系的方程為x2+y2-2axCos-2aySin=0(a>0)

(1)求圓系圓心的軌跡方程;

(2)證明圓心軌跡與動圓相交所得的公共弦長為定值

查看答案和解析>>

坐標系與參數(shù)方程已知圓系的方程為x2+y2-2axCos-2aySin=0(a>0)

(1)求圓系圓心的軌跡方程;

(2)證明圓心軌跡與動圓相交所得的公共弦長為定值

查看答案和解析>>

坐標系與參數(shù)方程已知圓系的方程為x2+y2-2axCos-2aySin=0(a>0)

(1)求圓系圓心的軌跡方程;

(2)證明圓心軌跡與動圓相交所得的公共弦長為定值

查看答案和解析>>

坐標系與參數(shù)方程

已知圓錐曲線為參數(shù))和定點F1,F(xiàn)2是圓錐曲線的左右焦點。

(1)求經(jīng)過點F2且垂直于直線AF1的直線l的參數(shù)方程;

(2)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,求直線AF2的極坐標方程。

 

查看答案和解析>>

一、選擇題:(每題5分,共60分)

  • <table id="iw5gd"></table>

      20080416

      二、填空題:每題5分,共20分)

      13.[-5,7]; 14.();   15.(1,2)(2,3);    16.②③④

      17.解:(1),

      .又.(6分)

         (2)由,

      ,.(6分)

      18.證明:(1)因為在正方形ABCD中,AC=2

              可得:在△PAB中,PA2+AB2=PB2=6。

              所以PA⊥AB

              同理可證PA⊥AD

              故PA⊥平面ABCD (4分)

                 (2)取PE中點M,連接FM,BM,

              連接BD交AC于O,連接OE

              ∵F,M分別是PC,PF的中點,

              ∴FM∥CE,

              又FM面AEC,CE面AEC

              ∴FM∥面AEC

              又E是DM的中點

              OE∥BM,OE面AEC,BM面AEC

              ∴BM∥面AEC且BM∩FM=M

              ∴平面BFM∥平面ACE

              又BF平面BFM,∴BF∥平面ACE (4分)

                 (3)連接FO,則FO∥PA,因為PA⊥平面ABCD,則FO⊥平面ABCD,所以FO=1,

              SㄓACD=1,

                  ∴VFACD=VF――ACD=  (4分)

              19. (1)由已知圓的標準方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

              設(shè)圓的圓心坐標為(x,y),則(為參數(shù)),

              消參數(shù)得圓心的軌跡方程為:x2+y2=a2,…………(5分)

                 (2)有方程組得公共弦的方程:

              圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

              ∴弦長l=(定值)               (5分)

              20.解:(1),

              時,取最小值,

              .(6分)

                 (2)令,

              (不合題意,舍去).

              變化時的變化情況如下表:

              遞增

              極大值

              遞減

              內(nèi)有最大值

              內(nèi)恒成立等價于內(nèi)恒成立,

              即等價于,

              所以的取值范圍為.(6分)

              21.解:(1)

              ,

              數(shù)列是首項為,公比為的等比數(shù)列,

              時,,

                   (6分)

                 (2),

              時,

              時,,…………①

              ,………………………②

              得:

              也滿足上式,

              .(6分)

              22.解:(1)由題意橢圓的離心率

                      

              ∴橢圓方程為……2分

              又點在橢圓上

                       ∴橢圓的方程為(4分)

              (2)設(shè)

              消去并整理得……6分

              ∵直線與橢圓有兩個交點

              ,即……8分

              中點的坐標為……10分

              設(shè)的垂直平分線方程:

              ……12分

              將上式代入得

                 即 

              的取值范圍為…………(8分)