題目列表(包括答案和解析)
已知曲線上動點
到定點
與定直線
的距離之比為常數(shù)
.
(1)求曲線的軌跡方程;
(2)若過點引曲線C的弦AB恰好被點
平分,求弦AB所在的直線方程;
(3)以曲線的左頂點
為圓心作圓
:
,設(shè)圓
與曲線
交于點
與點
,求
的最小值,并求此時圓
的方程.
【解析】第一問利用(1)過點作直線
的垂線,垂足為D.
代入坐標(biāo)得到
第二問當(dāng)斜率k不存在時,檢驗得不符合要求;
當(dāng)直線l的斜率為k時,;,化簡得
第三問點N與點M關(guān)于X軸對稱,設(shè),, 不妨設(shè)
.
由于點M在橢圓C上,所以.
由已知,則
,
由于,故當(dāng)
時,
取得最小值為
.
計算得,,故
,又點
在圓
上,代入圓的方程得到
.
故圓T的方程為:
求圓心在直線y=-2x上,并且經(jīng)過點A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)
∴r==
,
故所求圓的方程為:+
=2
解:法一:
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r==
,
………………………10分
故所求圓的方程為:+
=2
………………………12分
法二:由條件設(shè)所求圓的方程為:+
=
, ………………………6分
解得a=1,b=-2, =2
………………………10分
所求圓的方程為:+
=2
………………………12分
其它方法相應(yīng)給分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com