中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

8.下列說法: ①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后.方差恒不變, 查看更多

 

題目列表(包括答案和解析)

下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②回歸方程y^=bx+a必過點(diǎn)(
.
x
,
.
y
);
③曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079,則其兩個(gè)變量間有關(guān)系的可能性是90%.
其中錯(cuò)誤的是
 

查看答案和解析>>

下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程
y
=3-5x,變量x增加1個(gè)單位時(shí),y平均增加5個(gè)單位;
③線性回歸方程
y
=
b
x+
a
必過(
.
x
,
.
y
);
④曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;
⑤有一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079,則其兩個(gè)變量間有關(guān)系的可能性是90%.
其中錯(cuò)誤的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程
y
=3-5x
,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;
③線性回歸方程
y
=
b
x+
a
必過(
.
x
 ,
.
y
);
④在一個(gè)2×2列聯(lián)中,由計(jì)算得K2=13.079則有99%的把握確認(rèn)這兩個(gè)變量間有關(guān)系;
其中錯(cuò)誤 的個(gè)數(shù)是( 。
本題可以參考獨(dú)立性檢驗(yàn)臨界值表:
P(K2≥k) 0.5 0.40 0.25 0.15 0.10 0.05 0.25 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.535 7.879 10.828
A、0B、1C、2D、3

查看答案和解析>>

下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程
y
=3-5x,變量
x
增加一個(gè)單位時(shí),
y
平均增加5個(gè)單位;
③線性回歸方程
y
=bx+a必過(
x
,
y
);
.
x
是x1,x2,…,x100的平均數(shù),
.
a
是x1,x2,…,x40的平均數(shù),
.
b
是x41,x42,…,x100的平均數(shù),則用a,b表示的
x
=
40a+60b
100

  其中錯(cuò)誤的個(gè)數(shù)是
1個(gè)
1個(gè)

查看答案和解析>>

下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程
y
=3-5x
,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;
③線性回歸方程
y
=
b
x+
a
必過(
.
x
.
y
);
其中錯(cuò)誤的個(gè)數(shù)是( 。

查看答案和解析>>

一、選擇題:(每題5分,共60分)

20080416

二、填空題:每題5分,共20分)

13.[-5,7]; 14.();   15.(1,2)(2,3);    16.②③④

17.解:(1),

.又,.(6分)

   (2)由,

.(6分)

18.證明:(1)因?yàn)樵谡叫蜛BCD中,AC=2

        • 可得:在△PAB中,PA2+AB2=PB2=6。

          所以PA⊥AB

          同理可證PA⊥AD

          故PA⊥平面ABCD (4分)

             (2)取PE中點(diǎn)M,連接FM,BM,

          連接BD交AC于O,連接OE

          ∵F,M分別是PC,PF的中點(diǎn),

          ∴FM∥CE,

          又FM面AEC,CE面AEC

          ∴FM∥面AEC

          又E是DM的中點(diǎn)

          OE∥BM,OE面AEC,BM面AEC

          ∴BM∥面AEC且BM∩FM=M

          ∴平面BFM∥平面ACE

          又BF平面BFM,∴BF∥平面ACE (4分)

             (3)連接FO,則FO∥PA,因?yàn)镻A⊥平面ABCD,則FO⊥平面ABCD,所以FO=1,

          SㄓACD=1,

              ∴VFACD=VF――ACD=  (4分)

          19. (1)由已知圓的標(biāo)準(zhǔn)方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

          設(shè)圓的圓心坐標(biāo)為(x,y),則(為參數(shù)),

          消參數(shù)得圓心的軌跡方程為:x2+y2=a2,…………(5分)

             (2)有方程組得公共弦的方程:

          圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

          ∴弦長(zhǎng)l=(定值)               (5分)

          20.解:(1)

          當(dāng)時(shí),取最小值

          .(6分)

             (2)令,

          ,(不合題意,舍去).

          當(dāng)變化時(shí),的變化情況如下表:

          遞增

          極大值

          遞減

          內(nèi)有最大值

          內(nèi)恒成立等價(jià)于內(nèi)恒成立,

          即等價(jià)于,

          所以的取值范圍為.(6分)

          21.解:(1),

          ,

          數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,

          當(dāng)時(shí),,

               (6分)

             (2)

          當(dāng)時(shí),;

          當(dāng)時(shí),,…………①

          ,………………………②

          得:

          也滿足上式,

          .(6分)

          22.解:(1)由題意橢圓的離心率

                  

          ∴橢圓方程為……2分

          又點(diǎn)在橢圓上

                   ∴橢圓的方程為(4分)

          (2)設(shè)

          消去并整理得……6分

          ∵直線與橢圓有兩個(gè)交點(diǎn)

          ,即……8分

          中點(diǎn)的坐標(biāo)為……10分

          設(shè)的垂直平分線方程:

          ……12分

          將上式代入得

             即 

          的取值范圍為…………(8分)