中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

16.下列4個命題: ①在△ABC中.∠A>∠B是sinA>sinB的充要條件, ②若a>0,b>0,則a3+b3≥3ab2恒成立, ③對于函數(shù)f(x)=x2+mx+n,若f>0,則f內(nèi)至多有一個零點(diǎn), ④y=f的圖象關(guān)于x=2對稱.其中正確命題序號 . 查看更多

 

題目列表(包括答案和解析)

(08年銀川一中一模理)   下列4個命題:

   ①在△ABC中,∠A>∠B是sinA>sinB的充要條件;

   ②若a>0,b>0,則a3+b3≥3ab2恒成立;

   ③對于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則f(x)在(a,b)內(nèi)至多有一個零點(diǎn);

   ④y=f(x-2)的圖象和y=f(2-x)的圖象關(guān)于x=2對稱。

其中正確命題序號________________。

查看答案和解析>>

下列4個命題:

①在△ABC中,∠A>∠B是sinA>sinB的充要條件;

②若a>0,b>0,則a3+b3≥3ab2恒成立;

③對于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則f(x)在(a,b)內(nèi)至多有一個零點(diǎn);

④y=f(x-2)的圖象和y=f(2-x)的圖象關(guān)于x=2對稱。

其中正確命題序號________________。

查看答案和解析>>

下列4個命題:

    ①在△ABC中,∠A>∠B是sinA>sinB的充要條件;

    ②若a>0,b>0,則a3+b3≥3ab2恒成立;

    ③對于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則f(x)在(a,b)內(nèi)至多有一個零點(diǎn);

    ④y=f(x-2)的圖象和y=f(2-x)的圖象關(guān)于x=2對稱。

其中正確命題序號________________。

查看答案和解析>>

給出下列四個命題:
①在△ABC中,∠A>∠B是sinA>sinB的充要條件;
②給定命題p,q,若“p或q”為真,則“p且q”為真;
③設(shè)a,b,m∈R,若a<b,則am2<bm2
④若直線l1:ax+y+1=0與直線l2:x-y+1=0垂直,則a=1.
其中正確命題的序號是(  )

查看答案和解析>>

給出下列四個命題:
①在△ABC中,∠A>∠B是sinA>sinB的充要條件;
②給定命題p,q,若“p或q”為真,則“p且q”為真;
③設(shè)a,b,m∈R,若a<b,則am2<bm2
④若直線l1:ax+y+1=0與直線l2:x-y+1=0垂直,則a=1.
其中正確命題的序號是( )
A.①③
B.①④
C.②③
D.③④

查看答案和解析>>

一、選擇題:(每題5分,共60分)

    • 20080416

      二、填空題:每題5分,共20分)

      13.   14.;  15.a=-1或a=-;   

      16.①④

      17.解:(1),

      .又.(6分)

      (2)由,

      .(6分)

      18.證法一:向量法

      證法二:(1)由已知有BC⊥AB,BC⊥B1B,∴BC⊥平面ABB1A1

      又A1E在平面ABB1A1內(nèi)     ∴有BC⊥A1E

      (2)取B1C的中點(diǎn)D,連接FD、BD

      ∵F、D分別是AC1、B1C之中點(diǎn),∴FD∥A1B1∥BE

      ∴四邊形EFBD為平行四邊形    ∴EF∥BD

      又BD平面BCC1B1   

      ∴EF∥面BCC1B1

      (3)過B1作B1H⊥CEFH,連BH,又B1B⊥面BAC,B1H⊥CE

      ∴BH⊥EC    ∴∠B1HB為二面角B1-EC-B平面角

      在Rt△BCE中有BE=,BC=,CE=,BH=

      又∠A1CA=      ∴BB1=AA1=AC=2   

      ∴tan∠B1HB=

      19.解(1)由已知圓的標(biāo)準(zhǔn)方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

      設(shè)圓的圓心坐標(biāo)為(x,y),

      為參數(shù)),消參數(shù)得圓心的軌跡方程為:x2+y2=a2,(5分)

        (2)有方程組得公共弦的方

      程:圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

      ∴弦長l=(定值)        (5分)

       

      20.(1)合格結(jié)果:0,1,2,3   相應(yīng)月盈利額X=-30,5,40,75

      (2)P(X≥40)=P(X=40)+P(X=75)=

      (3)

      X

      -30

      5

      40

      75

      P

       

      EX=54(元)    ∴6個月平均:6×54=324(元)

      21.(1)由已知:   

      依題意得:≥0對x∈成立

      ∴ax-1≥0,對x∈恒成立,即a≥,對x∈恒成立,

      ∴a≥(max,即a≥1.

      (2)當(dāng)a=1時,,x∈[,2],若x∈,則,

      若x∈,則,故x=1是函數(shù)f(x)在區(qū)間[,2]上唯一的極小值點(diǎn),也就是最小值點(diǎn),故f(x)min=f(1)=0.

      又f()=1-ln2,f(2)=- +ln2,f()-f(2)=-2ln2=,

      ∵e3>2.73=19.683>16,

      ∴f()-f(2)>0   

      ∴f()>f(2)  

      ∴f(x)在[,2]上最大值是f(

      ∴f(x)在[,2]最大1-ln2,最小0

      (3)當(dāng)a=1時,由(1)知,f(x)=+lnx在

      當(dāng)n>1時,令x=,則x>1     ∴f(x)>f(1)=0

      即ln>

      22.解:(1)設(shè)橢圓方程為(a>b>0)

           ∴橢圓方程

      (2) ∵直線∥DM且在y軸上的截距為m,∴y=x+m

      與橢圓交于A、B兩點(diǎn)

      ∴△=(2m)2-4(2m2-4)>0-2<m<2(m≠0)

      (3)設(shè)直線MA、MB斜率分別為k1,k2,則只要證:k1+k2=0

      設(shè)A(x1,y1),B(x2,y2),則k1=,k2=

      由x2+2mx+2m2-4=0得x1+x2=-2m,x1x2=2m2-4

      而k1+k2=+= (*)

      又y1=x1+m  y2=x2+m

      ∴(*)分子=(x1+m-1)(x2-2)+( x2+m -1)(x1-2)

      =x1x2+(m-2)(x1+x2)-4(m-1)

      =2m2-4+(m-2)(-m)-4(m-1)

        =0

      ∴k1+k2=0,證之.