中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

19. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標(biāo)原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標(biāo)準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時,求弦長|AB|的取值范圍.

查看答案和解析>>

 

一、選擇題:

        • <center id="uz8fa"><optgroup id="uz8fa"></optgroup></center>

            <tfoot id="uz8fa"></tfoot>
          • <mark id="uz8fa"><big id="uz8fa"><source id="uz8fa"></source></big></mark>
              <abbr id="uz8fa"></abbr>

              1,3,5

              二、填空題

              13.       14.190     15.②④            16.

              三、解答題

              17.(1)

                                          …………4分

              ∵A為銳角,∴,∴,

              ∴當(dāng)時,                           …………6分

                 (2)由題意知,∴

              又∵,∴,∴,              …………8分

              又∵,∴,                                …………9分

              由正弦定理         …………12分

              18.解:(I)由函數(shù)

                                     …………2分

                                            …………4分

                                                                 …………6分

                 (II)由,

                                          …………8分

              ,                                             …………10分

                                                                

              故要使方程           …………12分

              19.(I)連接BD,則AC⊥BD,

              ∵D1D⊥地面ABCD,∴AC⊥D1D

              ∴AC⊥平面BB1D1D,

              ∵D1P平面BB1D1D,∴D1P⊥AC.…………4分

                 (II)解:設(shè)連D1O,PO,

              ∵D1A=D1C,∴D1O⊥AC,同理PO⊥AC,

              又∵D1O∩PO=0,

              ∴AC⊥平面POD1 ………………6分

              ∵AB=2,∠ABC=60°,

              ∴AO=CO=1,BO=DO=

              ∴D1O=

                                      …………9分

              ,                        …………10分

                  …………12分

              20.解:(I)當(dāng) ;                       …………1分

              當(dāng)

                                                                          …………4分

              驗證

                                   …………5分

                 (II)該商場預(yù)計銷售該商品的月利潤為

              ,

                                                                          …………7分

              (舍去)……9分

              綜上5月份的月利潤最大是3125元。                           …………12分

              21.解:(I)∵|OA1|=|OA2|=|OA3|=2,                             …………1分

              ∴外接圓C以原點O為圓心,線段OA1為半徑,故其方程為……3分

              ∴所求橢圓C1的方程是                            …………6分

                 (II)直線PQ與圓C相切。

              證明:設(shè)

               

               

               

              ∴直線OQ的方程為                            …………8分

              因此,點Q的坐標(biāo)為

                                                                          …………10分

              綜上,當(dāng)2時,OP⊥PQ,故直線PQ始終與圓C相切。        …………12分

              22.解:(I)由題意知:                         …………2分

              解得

                                                       …………4分

                 (II),

              當(dāng),                  …………6分

                                                  …………8分

              故數(shù)列             …………10分

                 (III)若

              從而

                                         …………11分

              即數(shù)列                                         …………13分

                                           …………14分