題目列表(包括答案和解析)
已知,且
.
(1)求的值;
(2)求的值.
【解析】本試題主要考查了二項(xiàng)式定理的運(yùn)用,以及系數(shù)求和的賦值思想的運(yùn)用。第一問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image005.png">,所以,可得
,第二問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image008.png">,所以
,所以
,利用組合數(shù)性質(zhì)可知。
解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image005.png">,所以, ……3分
化簡(jiǎn)可得,且
,解得
. …………6分
(2),所以
,
所以,
氣溫(℃) | 18 | 13 | 10 | -1 |
用電量(度) | 24 | 34 | 38 | 64 |
已知過(guò)點(diǎn)的動(dòng)直線
與拋物線
相交于
兩點(diǎn).當(dāng)直線
的斜率是
時(shí),
.
(1)求拋物線的方程;
(2)設(shè)線段的中垂線在
軸上的截距為
,求
的取值范圍.
【解析】(1)B,C
,當(dāng)直線
的斜率是
時(shí),
的方程為
,即
(1’)
聯(lián)立 得
,
(3’)
由已知 ,
(4’)
由韋達(dá)定理可得G方程為
(5’)
(2)設(shè):
,BC中點(diǎn)坐標(biāo)為
(6’)
得
由
得
(8’)
BC中垂線為 (10’)
(11’)
氣溫(℃) | 18 | 13 | 10 | -1 |
用電量(度) | 24 | 34 | 38 | 64 |
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對(duì)任意
,
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
【解析】第一問(wèn)利用的定義域是
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
第二問(wèn)中,若對(duì)任意不等式
恒成立,問(wèn)題等價(jià)于
只需研究最值即可。
解: (I)的定義域是
......1分
............. 2分
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
........4分
(II)若對(duì)任意不等式
恒成立,
問(wèn)題等價(jià)于,
.........5分
由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),
故也是最小值點(diǎn),所以; ............6分
當(dāng)b<1時(shí),;
當(dāng)時(shí),
;
當(dāng)b>2時(shí),;
............8分
問(wèn)題等價(jià)于 ........11分
解得b<1 或 或
即
,所以實(shí)數(shù)b的取值范圍是
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com