中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

13. 從不在圓上的一點A做直線交⊙O于B.C兩點.且AB?AC=60.OA=8.則⊙O的半徑等于 . 查看更多

 

題目列表(包括答案和解析)

從不在圓上的一點A做直線交⊙O于B、C兩點,且AB·AC=60,OA=8,則⊙O的半徑等于________.

查看答案和解析>>

選答題:本大題共四小題,請從這4題中選作2小題,如果多做,則按所做的前兩題記分.每小題10分,共20分,解答時應(yīng)寫出文字說明,證明過程或演算步驟.
A、選修4-1:
幾何證明選講.如圖,圓O的直徑AB=4,C為圓周上一點,BC=2,過C作圓O的切線l,過A作l的垂線AD,AD分別與直線l、圓O交于點D,E,求∠DAC的度數(shù)與線段AE的長.
B、選修4-2:矩陣變換
求圓C:x2+y2=4在矩陣A=[]的變換作用下的曲線方程.
C、選修4-4:坐標系與參數(shù)方程
若兩條曲線的極坐標方程分別為ρ=1與ρ=2sinθ,它們相交于A、B兩點,求線段AB的長.
D、選修4-5:不等式選講
已知a、b、c為正數(shù),且滿足acos2θ+bsin2θ<c.求證:cos2θ+sin2θ<

查看答案和解析>>

(2011•江蘇二模)選答題:本大題共四小題,請從這4題中選作2小題,如果多做,則按所做的前兩題記分.每小題10分,共20分,解答時應(yīng)寫出文字說明,證明過程或演算步驟.
A、選修4-1:
幾何證明選講.如圖,圓O的直徑AB=4,C為圓周上一點,BC=2,過C作圓O的切線l,過A作l的垂線AD,AD分別與直線l、圓O交于點D,E,求∠DAC的度數(shù)與線段AE的長.
B、選修4-2:矩陣變換
求圓C:x2+y2=4在矩陣A=[
20
01
]的變換作用下的曲線方程.
C、選修4-4:坐標系與參數(shù)方程
若兩條曲線的極坐標方程分別為ρ=1與ρ=2sinθ,它們相交于A、B兩點,求線段AB的長.
D、選修4-5:不等式選講
已知a、b、c為正數(shù),且滿足acos2θ+bsin2θ<c.求證:
a
cos2θ+
b
sin2θ<
c

查看答案和解析>>

選考題
請從下列三道題當中任選一題作答,如果多做,則按所做的第一題計分,請在答題卷上注明題號.
22-1設(shè)函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定義域為R,求實數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當AC=1,BC=2時,求AD的長.
22-3已知P為半圓C:
x=cosθ
y=sinθ
(θ為參數(shù),0≤θ≤π)
上的點,點A的坐標為(1,0),O為坐標原點,點M在射線OP上,線段OM與半圓C上的弧AP的長度均為
π
3

(1)求以O(shè)為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標;
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

(選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應(yīng)寫出文字說明、證明過程或演算步驟.

A. 選修4-1:幾何證明選講

如圖,是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的半⊙O交于點,延長

   (1)求證:的中點;(2)求線段的長.

B.選修4-2:矩陣與變換

已知矩陣A,其中,若點在矩陣A的變換下得到

   (1)求實數(shù)的值;

   (2)矩陣A的特征值和特征向量.

 

C. 選修4-4:坐標系與參數(shù)方程

在極坐標系中,圓的極坐標方程為,

(1)過極點的一條直線與圓相交于,A兩點,且∠,求的長.

(2)求過圓上一點,且與圓相切的直線的極坐標方程;

 

D.選修4-5:不等式選講

已知實數(shù)滿足,求的最小值;

 

 

查看答案和解析>>

一、選擇題

1~4   BBCA    5~8   ADCD

二、填空題

9、      10、    =      11、        12.   42  ;

13.  2或        14.        15.

三、解答題

16(本小題滿分12分)

1)

    ………………4分

  2)當單調(diào)遞減,故所求區(qū)間為      ………………8分

   (3)

       ………………12分

17(本題滿分14分)

解:(Ⅰ)由函數(shù)的圖象關(guān)于原點對稱,得,………1分

,∴. ………2分

,∴. ……………3分

,即.  ………………5分

. ……………………………6分

 (Ⅱ)由(Ⅰ)知,∴

,∴.   …………………8分

0

+

0

極小

極大

.  …………12分

18

證明:(I)在正中,的中點,所以

,,,所以

,所以.所以由,有

 (II)取正的底邊的中點,連接,則

,所以

如圖,以點為坐標原點,軸,軸,

建立空間直角坐標系.設(shè),則有,

,,,,.再設(shè)是面的法向量,則有

,即,可設(shè)

是面的法向量,因此

,

所以,即平面PAB與平面PDC所成二面角為

(Ⅲ)由(II)知,設(shè)與面所成角為,則

所以與面所成角的正弦值為

 

19(本題滿分14分)

20解:(I)建立圖示的坐標系,設(shè)橢圓方程為依題意,2a=4,

橢圓方程為………………………………2分

F(-1,0)將x=-1代入橢圓方程得

∴當彗星位于太陽正上方時,二者在圖中的距離為1.5┩.……………………6分

(Ⅱ)由(I)知,A1(-2,0),A2(2,0),

<style id="teiwb"></style>
<sub id="teiwb"><rt id="teiwb"></rt></sub>
<style id="teiwb"></style>

    又點M異于頂點A1,A2,∴-2<x0<2,

    由P、M、A1三點共線可得P

    ………………………8分

    …………………12分

    ∴P、A2、N三點共線,∴直線A2M與NA2不垂直,

    ∴點A2不在以MN為直徑的圓上…………………………14分

     

     

    21.解:(I)  .注意到,即

    .所以當變化時,的變化情況如下表:

    +

    0

    遞增

    極大值

    遞減

    遞減

    極小值

    遞增

     

    所以的一個極大值,的一個極大值..

    (II) 點的中點是,所以的圖象的對稱中心只可能是.

    設(shè)的圖象上一點,關(guān)于的對稱點是..也在的圖象上, 因而的圖象是中心對稱圖形.

    (III) 假設(shè)存在實數(shù)、.,.

    , 當時, ,而.故此時的取值范圍是不可能是.

    ,當時, ,而.故此時的取值范圍是不可能是.

    ,由的單調(diào)遞增區(qū)間是,知的兩個解.而無解. 故此時的取值范圍是不可能是.

    綜上所述,假設(shè)錯誤,滿足條件的實數(shù)不存在.