中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

5.(理)已知拋物線上兩個動點B.C和點A(1.2)且∠BAC=90°.則動直線BC必過定點 A.(2.5) B. C. D.(5.2) 查看更多

 

題目列表(包括答案和解析)

已知拋物線C的頂點在坐標原點,焦點在x軸上,P(2,0)為定點.
(Ⅰ)若點P為拋物線的焦點,求拋物線C的方程;
(Ⅱ)若動圓M過點P,且圓心M在拋物線C上運動,點A、B是圓M與y軸的兩交點,試推斷是否存在一條拋物線C,使|AB|為定值?若存在,求這個定值;若不存在,說明理由.

查看答案和解析>>

已知拋物線、橢圓和雙曲線都經(jīng)過點M(2,1),它們在y軸上有一個公共焦點,橢圓和雙曲線的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這三條曲線的方程;
(2)已知動直線l過點P(0,3),交拋物線于A、B兩點,是否存在垂直于y軸的直線m被以AP為直徑的圓截得的弦長為定值?若存在,求出m的方程;若不存在,說明理由.

查看答案和解析>>

已知拋物線、橢圓和雙曲線都經(jīng)過點M(2,1),它們在y軸上有一個公共焦點,橢圓和雙曲線的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這三條曲線的方程;
(2)已知動直線l過點P(0,3),交拋物線于A、B兩點,是否存在垂直于y軸的直線m被以AP為直徑的圓截得的弦長為定值?若存在,求出m的方程;若不存在,說明理由.

查看答案和解析>>

已知拋物線C的頂點在坐標原點,焦點在x軸上,P(2,0)為定點.
(Ⅰ)若點P為拋物線的焦點,求拋物線C的方程;
(Ⅱ)若動圓M過點P,且圓心M在拋物線C上運動,點A、B是圓M與y軸的兩交點,試推斷是否存在一條拋物線C,使|AB|為定值?若存在,求這個定值;若不存在,說明理由.

查看答案和解析>>

已知橢圓是拋物線

的一條切線。

   (I)求橢圓的方程;

   (II)過點的動直線L交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點T,使得以AB為直徑的圓恒過點T?若存在,求出點T的坐標;若不存在,請說明理由。

查看答案和解析>>

1.A 2.B 3.B 4.D 5.(理)C。ㄎ模〢 6.B 7.A 8.B 9.A 10.B 11.(理)A (文)C 12.B

13.(理)。ㄎ模25,60,15 14.-672 15.2.5小時 16.①,④

17.設fx)的二次項系數(shù)為m,其圖象上兩點為(1-x)、B(1+x

因為,,所以,

x的任意性得fx)的圖象關于直線x=1對稱,

m>0,則x≥1時,fx)是增函數(shù),若m<0,則x≥1時,fx)是減函數(shù).

  ∵ ,,, ,

  ∴ 當時,

,

  ∵ , ∴ 

  當時,同理可得

  綜上:的解集是當時,為;

  當時,為,或

18.(理)(1)設甲隊在第五場比賽后獲得冠軍為事件M,則第五場比賽甲隊獲勝,前四場比賽甲隊獲勝三場,依題意得

 。2)設甲隊獲得冠軍為事件E,則E包含第四、第五、第六、第七場獲得冠軍四種情況,且它們被彼此互斥.

  ∴ 

 。ㄎ模┰O甲袋內恰好有4個白球為事件B,則B包含三種情況.

 、偌状腥2個白球,且乙袋中取2個白球,②甲袋中取1個白球,1個黑球,且乙袋中取1個白球,1個黑球,③甲、乙兩袋中各取2個黑球.

  ∴ 

19.(1)取中點E,連結ME、,∴ MCEC.∴ MC.∴ ,MC,N四點共面.

 。2)連結BD,則BD在平面ABCD內的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

  ∴ ∠CBD+∠BCM=90°. ∴ MCBD.∴ 

 。3)連結,由是正方形,知

  ∵ MC, ∴ ⊥平面

  ∴ 平面⊥平面

 。4)∠與平面所成的角且等于45°.

20.(1).∵ x≥1. ∴ 

  當x≥1時,是增函數(shù),其最小值為

  ∴ a<0(a=0時也符合題意). ∴ a≤0.

 。2),即27-6a-3=0, ∴ a=4.

  ∴ 有極大值點,極小值點

  此時fx)在上時減函數(shù),在,+上是增函數(shù).

  ∴ fx)在,上的最小值是,最大值是,(因).

21.(1)∵斜率k存在,不妨設k>0,求出M,2).直線MA方程為,直線MB方程為

  分別與橢圓方程聯(lián)立,可解出,

  ∴ . ∴ (定值).

  (2)設直線AB方程為,與聯(lián)立,消去y

  由>0得-4<m<4,且m≠0,點MAB的距離為

  設△AMB的面積為S. ∴ 

  當時,得

22.(1)∵ a,,

  ∴   ∴   ∴  ∴ 

  ∴ a=2或a=3(a=3時不合題意,舍去). ∴a=2.

(2),,由可得 

∴ .∴ b=5

  (3)由(2)知,, ∴ 

  ∴ . ∴ ,

  ∵ ,

  當n≥3時,

  

  

  

  ∴ . 綜上得 

 


同步練習冊答案