中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

解析:解:(1)=.由題意可知. 查看更多

 

題目列表(包括答案和解析)

已知m>1,直線,橢圓C:、分別為橢圓C的左、右焦點.

(Ⅰ)當(dāng)直線過右焦點時,求直線的方程;

(Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[

【解析】第一問中因為直線經(jīng)過點,0),所以,得.又因為m>1,所以,故直線的方程為

第二問中設(shè),由,消去x,得,

則由,知<8,且有

由題意知O為的中點.由可知從而,設(shè)M是GH的中點,則M().

由題意可知,2|MO|<|GH|,得到范圍

 

查看答案和解析>>

(本小題滿分14分)

已知函數(shù)對于任意),都有式子成立(其中為常數(shù)).

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)利用函數(shù)構(gòu)造一個數(shù)列,方法如下:

對于給定的定義域中的,令,,…,,…

在上述構(gòu)造過程中,如果=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過程繼續(xù)下去;如果不在定義域中,那么構(gòu)造數(shù)列的過程就停止.

(。┤绻梢杂蒙鲜龇椒(gòu)造出一個常數(shù)列,求的取值范圍;

(ⅱ)是否存在一個實數(shù),使得取定義域中的任一值作為,都可用上述方法構(gòu)造出一個無窮數(shù)列?若存在,求出的值;若不存在,請說明理由;

(ⅲ)當(dāng)時,若,求數(shù)列的通項公式.

查看答案和解析>>

(本小題滿分14分)
已知函數(shù)對于任意),都有式子成立(其中為常數(shù)).
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)利用函數(shù)構(gòu)造一個數(shù)列,方法如下:
對于給定的定義域中的,令,…,,…
在上述構(gòu)造過程中,如果=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過程繼續(xù)下去;如果不在定義域中,那么構(gòu)造數(shù)列的過程就停止.
(。┤绻梢杂蒙鲜龇椒(gòu)造出一個常數(shù)列,求的取值范圍;
(ⅱ)是否存在一個實數(shù),使得取定義域中的任一值作為,都可用上述方法構(gòu)造出一個無窮數(shù)列?若存在,求出的值;若不存在,請說明理由;
(ⅲ)當(dāng)時,若,求數(shù)列的通項公式.

查看答案和解析>>

已知函數(shù),

(1)求函數(shù)的定義域;

(2)求函數(shù)在區(qū)間上的最小值;

(3)已知,命題p:關(guān)于x的不等式對函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.

【解析】第一問中,利用由 即

第二問中,,得:

第三問中,由在函數(shù)的定義域上 的任意,當(dāng)且僅當(dāng)時等號成立。當(dāng)命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以

當(dāng)命題p為真,命題q為假時;當(dāng)命題p為假,命題q為真時分為兩種情況討論即可 。

解:(1)由 即

(2),得:

(3)由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時等號成立。當(dāng)命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以

當(dāng)命題p為真,命題q為假時,

當(dāng)命題p為假,命題q為真時,,

所以

 

查看答案和解析>>

在復(fù)平面內(nèi), 是原點,向量對應(yīng)的復(fù)數(shù)是=2+i。

(Ⅰ)如果點A關(guān)于實軸的對稱點為點B,求向量對應(yīng)的復(fù)數(shù);

(Ⅱ)復(fù)數(shù),對應(yīng)的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結(jié)論。

【解析】第一問中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二問中,由題意得,=(2,1)  ∴

同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O(shè)為圓心,為半徑的圓上

(Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四點在同一個圓上。                              2分

證明:由題意得,=(2,1)  ∴

  同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O(shè)為圓心,為半徑的圓上

 

查看答案和解析>>


同步練習(xí)冊答案