中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

1.第Ⅱ卷包括填空題和解答題共兩個(gè)大題. 查看更多

 

題目列表(包括答案和解析)

將填空題和解答題用0.5毫米的黑色墨水簽字筆答在答題卡上每題對(duì)應(yīng)的答題區(qū)域內(nèi).答在試題卷上無(wú)效。

查看答案和解析>>

函數(shù)f(x)=3sin的圖象為C,如下結(jié)論中正確的是________(寫(xiě)出所有正確結(jié)論的編號(hào)).①圖象C關(guān)于直線x=對(duì)稱;②圖象C關(guān)于點(diǎn)對(duì)稱;③由y=3sin2x的圖象向右平移個(gè)單位長(zhǎng)度可以得到圖象C;④函數(shù)f(x)在區(qū)間內(nèi)是增函數(shù).

第Ⅱ卷 主觀題部分(共80分)

查看答案和解析>>

已知均為正數(shù),,則的最小值是            (    )

         A.            B.           C.             D.

第Ⅱ卷  (非選擇題  共90分)

二、填空題:本大題共4小題,每小題4分,共16分,將答案填在題中的橫線上。

查看答案和解析>>

 

第Ⅱ卷(非選擇題,共90分)

二、填空題:(本大題4小題,每小題5分,滿分20分)

13.用一個(gè)平面去截正方體,其截面是一個(gè)多邊形,則這個(gè)多邊形的邊數(shù)最多是     條 。

 

查看答案和解析>>

已知函數(shù)

(1)在給定的直角坐標(biāo)系內(nèi)畫(huà)出的圖象;

(2)寫(xiě)出的單調(diào)遞增區(qū)間(不需要證明);

(3)寫(xiě)出的最大值和最小值(不需要證明).

 (第II卷)   50分

一、填空題(本大題共2小題,每小題4分,共8分.把答案填在答題卡上)

查看答案和解析>>

 

一、選擇題

AACCD   BBDDD   AC

二、填空題

13.    14.6    15.①⑤    16.

三、解答題

17.解:(Ⅰ)因?yàn)?sub>,

由正弦定理,得,              ……3分

整理,得

因?yàn)?sub>、、的三內(nèi)角,所以,    

因此  .                                                 ……6分

        <tt id="blgec"></tt>
        <samp id="blgec"></samp>
        <dfn id="blgec"><code id="blgec"></code></dfn>
        <blockquote id="blgec"><option id="blgec"></option></blockquote>

              20090520

              由余弦定理,得,所以,      ……10分

              解方程組,得 .                       ……12分

              18.解:記 “過(guò)第一關(guān)”為事件A,“第一關(guān)第一次過(guò)關(guān)”為事件A1,“第一關(guān)第二次過(guò)關(guān)”為事件A2;“過(guò)第二關(guān)”為事件B, “第二關(guān)第一次過(guò)關(guān)”為事件B1,“第二關(guān)第二次過(guò)關(guān)”為事件B2;

              (Ⅰ)該同學(xué)獲得900元獎(jiǎng)金,即該同學(xué)順利通過(guò)第一關(guān),但未通過(guò)第二關(guān),則所求概率為

              .              ……………………………3分

              (Ⅱ)該同學(xué)通過(guò)第一關(guān)的概率為:

              , ……………………5分

              該同學(xué)通過(guò)第一、二關(guān)的概率為:

                       

              ,   ………………………7分

               ∴ 在該同學(xué)已順利通過(guò)第一關(guān)的條件下,他獲3600元獎(jiǎng)金的概率是

              .     ………………………………………………………8分

              (Ⅲ)該同學(xué)獲得獎(jiǎng)金額可能取值為:0 元,900 元, 3600 元.………9分

               ,  ……………………………10分    

              , 

              ,         

              (另解:=1-

                     ∴  . ……12分

              19.(本題滿分12分)

              解: (Ⅰ)當(dāng)中點(diǎn)時(shí),有∥平面.…1分

              證明:連結(jié)連結(jié)

              ∵四邊形是矩形  ∴中點(diǎn)

              ∥平面,

              平面,平面

              ,------------------4分

              的中點(diǎn).------------------5分

              (Ⅱ)建立空間直角坐標(biāo)系如圖所示,

              ,,,

              , ------------7分

              所以

              設(shè)為平面的法向量,

              則有,

              ,可得平面的一個(gè)

              法向量為,              ----------------9分

              而平面的法向量為,    ---------------------------10分

              所以

              所以二面角的余弦值為----------------------------12分

              學(xué)科網(wǎng)(Zxxk.Com)20.(Ⅰ)設(shè)橢圓C的方程為,

              則由題意知

              ∴橢圓C的方程為      ……………………4分

              (Ⅱ)假設(shè)右焦點(diǎn)可以為的垂心,

              ,∴直線的斜率為,

              從而直線的斜率為1.設(shè)其方程為, …………………………………5分

              聯(lián)立方程組,

              整理可得:   ……………6分.

                     ,∴

              設(shè),則,

              .……………7分

                     于是

                    

              解之得.    ……………10分

              當(dāng)時(shí),點(diǎn)即為直線與橢圓的交點(diǎn),不合題意;

              當(dāng)時(shí),經(jīng)檢驗(yàn)知和橢圓相交,符合題意.

              所以,當(dāng)且僅當(dāng)直線的方程為時(shí),

              點(diǎn)的垂心.…………12分  

              21.解:(Ⅰ)的導(dǎo)數(shù)

              ,解得;令

              解得.………………………2分

              從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

              所以,當(dāng)時(shí),取得最小值.……………………………5分

              (II)因?yàn)椴坏仁?sub>的解集為P,且,

              所以,對(duì)任意的,不等式恒成立,……………………………6分

              ,得

              當(dāng)時(shí),上述不等式顯然成立,故只需考慮的情況!7分

              變形為  ………………………………………………8分

              ,則

                     令,解得;令

              解得.…………………………10分

                     從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

              所以,當(dāng)時(shí),

              取得最小值,從而,

              所求實(shí)數(shù)的取值范圍是.………………12分

              22.解:(Ⅰ)當(dāng)時(shí),    

               。á颍┰中,

                在中,,

              當(dāng)時(shí),中第項(xiàng)是

              中的第項(xiàng)是,

              所以中第項(xiàng)與中的第項(xiàng)相等.

              當(dāng)時(shí),中第項(xiàng)是,

              中的第項(xiàng)是

              所以中第項(xiàng)與中的第項(xiàng)相等.

                ∴ 

              (Ⅲ)

                

              +

              當(dāng)且僅當(dāng),等號(hào)成立.

              ∴當(dāng)時(shí),最。