在平面直角坐標(biāo)系中,橢圓
為
(1)若一直線與橢圓交于兩不同點(diǎn)
,且線段
恰以點(diǎn)
為中點(diǎn),求直線
的方程;
(2)若過點(diǎn)的直線
(非
軸)與橢圓
相交于兩個(gè)不同點(diǎn)
試問在
軸上是否存在定點(diǎn)
,使
恒為定值
?若存在,求出點(diǎn)
的坐標(biāo)及實(shí)數(shù)
的值;若不存在,請(qǐng)說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:的左,右焦點(diǎn)分別為
,過
的直線L與橢圓C相交 A,B于兩點(diǎn),且直線L的傾斜角為
,點(diǎn)
到直線L的距離為
,
(1) 求橢圓C的焦距.(2)如果求橢圓C的方程.(12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知?jiǎng)狱c(diǎn)與平面上兩定點(diǎn)
、
連線的斜率的積為定
值.
(1)求動(dòng)點(diǎn)的軌跡方程
;(2)設(shè)直線
與曲線
交于
、
兩點(diǎn),當(dāng)|
|=
時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分 )已知橢圓經(jīng)過點(diǎn)
,一個(gè)焦點(diǎn)是
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓與
軸的兩個(gè)交點(diǎn)為
、
,點(diǎn)
在直線
上,直線
、
分別與橢圓
交于
、
兩點(diǎn).試問:當(dāng)點(diǎn)
在直線
上運(yùn)動(dòng)時(shí),直線
是否恒經(jīng)過定點(diǎn)
?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(10分)拋物線上有兩點(diǎn)
且
(0為坐標(biāo)原點(diǎn))
(1)求證:∥
(2)若
,求AB所在直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線3x2-y2=3,過點(diǎn)P(2,1)作一直線交雙曲線于A、B兩點(diǎn),若P為
AB的中點(diǎn),
(1)求直線AB的方程;
(2)求弦AB的長(zhǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程設(shè)橢圓的普通方程為
(1)設(shè)為參數(shù),求橢圓
的參數(shù)方程;
(2)點(diǎn)是橢圓
上的動(dòng)點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是橢圓
的兩個(gè)焦點(diǎn),
是橢圓上的點(diǎn),且
.
(1)求的周長(zhǎng);
(2)求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.
(1)求圓C的方程;
(2)若圓C與直線交于A,B兩點(diǎn),且
求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com