已知橢圓C:的左,右焦點(diǎn)分別為
,過
的直線L與橢圓C相交 A,B于兩點(diǎn),且直線L的傾斜角為
,點(diǎn)
到直線L的距離為
,
(1) 求橢圓C的焦距.(2)如果求橢圓C的方程.(12分)
(1)焦距2c=4(2)橢圓C的方程為。
解析試題分析:(1)由點(diǎn)到直線的距離公式可求出c=2.從而得到焦距2c=4.
(2) 因?yàn)橹本l過點(diǎn)F2(2,0),可設(shè)直線L的方程為,它與橢圓的方程聯(lián)立消去x得到關(guān)于y的一元二次方程,再利用韋達(dá)定理,得到y(tǒng)1+y2,y1y2,然后再利用
,
得到,這三個式子結(jié)合可求出a,b.從而得到橢圓的方程.
(1)∵點(diǎn)到直線L的距離為
,∴易得
,∴c=2
∴焦距2c=4(5分).
(2)∵,又過
的直線L的傾斜角為
,∴直線L的方程為
,
得
設(shè)
,
,解得
,
∵,∴
,∴a="3," ∴
.
橢圓C的方程為(12分)
考點(diǎn):點(diǎn)到直線的距離,直線與橢圓的方程的位置關(guān)系.
點(diǎn)評:(1)本題涉及到點(diǎn)到直線的距離公式:則點(diǎn)P到直線l的距離
.
(2)直線與圓錐曲線的位置關(guān)系問題一般要通過韋達(dá)定理及判別式來解決.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)已知中心在原點(diǎn)O,焦點(diǎn)在軸上的橢圓C的離心率為
,點(diǎn)A,B分別是橢圓C的長軸、短軸的端點(diǎn),點(diǎn)O到直線AB的距離為
。
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)E(3,0),設(shè)點(diǎn)P、Q是橢圓C上的兩個動點(diǎn),滿足EP⊥EQ,
求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左、右頂點(diǎn)分別為
、
,點(diǎn)
在橢圓上且異于
、
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(1)若直線與
的斜率之積為
,求橢圓的離心率;
(2)對于由(1)得到的橢圓,過點(diǎn)
的直線
交
軸于點(diǎn)
,交
軸于點(diǎn)
,若
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為雙曲線
的左、右焦點(diǎn).
(Ⅰ)若點(diǎn)為雙曲線與圓
的一個交點(diǎn),且滿足
,求此雙曲線的離心率;
(Ⅱ)設(shè)雙曲線的漸近線方程為,
到漸近線的距離是
,過
的直線交雙曲線于A,B兩點(diǎn),且以AB為直徑的圓與
軸相切,求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
設(shè)直線與拋物線
交于不同兩點(diǎn)A、B,F(xiàn)為拋物線的焦點(diǎn)。
(1)求的重心G的軌跡方程;
(2)如果的外接圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知點(diǎn)的坐標(biāo)分別為
,直線
相交于點(diǎn)
,且它們的斜率之積是
,試討論點(diǎn)
的軌跡是什么。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)已知,且點(diǎn)A
和點(diǎn)B
都在橢圓
內(nèi)部,
(1)請列出有序數(shù)組的所有可能結(jié)果;
(2)記“使得成立的
”為事件A,求事件A發(fā)生的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)在平面直角坐標(biāo)系O
中,直線
與拋物線
=2
相交于A、B兩點(diǎn).
(Ⅰ)求證:命題“如果直線過點(diǎn)T(3,0),那么
=3”是真命題;
(Ⅱ)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,橢圓
為
(1)若一直線與橢圓交于兩不同點(diǎn)
,且線段
恰以點(diǎn)
為中點(diǎn),求直線
的方程;
(2)若過點(diǎn)的直線
(非
軸)與橢圓
相交于兩個不同點(diǎn)
試問在
軸上是否存在定點(diǎn)
,使
恒為定值
?若存在,求出點(diǎn)
的坐標(biāo)及實(shí)數(shù)
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com