已知在
處取得極值,且在點
處的切線斜率為
.
⑴求的單調(diào)增區(qū)間;
⑵若關(guān)于的方程
在區(qū)間
上恰有兩個不相等的實數(shù)根,求實數(shù)
的取值范圍.
(1);(2)
解析試題分析:(1)要求高次函數(shù)的單調(diào)增區(qū)間,只能使用導(dǎo)數(shù)法,令
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù)f(x)=x2-mlnx,g(x)=x2-x+a.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)f(x)=(x-a)2(x-b)(a,b∈R,a<b).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū),解得其增區(qū)間.所以得確定其函數(shù)解析式.根據(jù)導(dǎo)數(shù)的幾何意義知
,根據(jù)在
處取得極值,可知
,解方程組可得
解析式.
(2)構(gòu)造新函數(shù),根據(jù)其在區(qū)間
上有兩個不等的實數(shù)根,可知新函數(shù)在該區(qū)間內(nèi)與
軸有兩個不同的交點.根據(jù)新函數(shù)在該區(qū)間內(nèi)的單調(diào)性以及極值建立關(guān)系式,解決;
試題解析:⑴ 1分;由題意,得
3分
,由
得
;
的單調(diào)增區(qū)間是
5分
⑵由⑴知;
;
令;
則,由
得
7分;
當(dāng)變化時,
的變化情況如下表:
0 + 極小值 導(dǎo)學(xué)全程練創(chuàng)優(yōu)訓(xùn)練系列答案
課時同步導(dǎo)練系列答案
奪分王系列答案
助學(xué)讀本系列答案
指南針導(dǎo)學(xué)探究系列答案
學(xué)習(xí)指要系列答案
每課一練浙江少年兒童出版社系列答案
雙成卷王系列答案
陽光訓(xùn)練課時作業(yè)系列答案
新課程新學(xué)習(xí)系列答案
年級
高中課程
年級
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
,其中
.
(1)當(dāng)時,求函數(shù)
的圖象在點
處的切線方程;
(2)如果對于任意,都有
,求
的取值范圍.
(1)當(dāng)a=0時,f(x)≥g(x)在(1,+∞),上恒成立,求實數(shù)m的取值范圍;
(2)當(dāng)m=2時,若函數(shù)h(x)=f(x)-g(x)在[1,3]上恰有兩個不同的零點,求實數(shù)a的取值范圍.,當(dāng)
時,
.
(1)若函數(shù)在區(qū)間
上存在極值點,求實數(shù)a的取值范圍;
(2)如果當(dāng)時,不等式
恒成立,求實數(shù)k的取值范圍;
(3)試證明:.
(e為自然對數(shù)的底數(shù))
(1)求的最小值;
(2)若對于任意的,不等式
恒成立,求實數(shù)
的取值范圍.
(1)當(dāng)a=1,b=2時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)設(shè)x1,x2是f(x)的兩個極值點,x3是f(x)的一個零點,且x3≠x1,x3≠x2.證明:存在實數(shù)x4,使得x1,x2,x3,x4按某種順序排列后構(gòu)成等差數(shù)列,并求x4.,
,且直線
與曲線
相切.
(1)若對內(nèi)的一切實數(shù)
,不等式
恒成立,求實數(shù)
的取值范圍;
(2)當(dāng)時,求最大的正整數(shù)
,使得對
(
是自然對數(shù)的底數(shù))內(nèi)的任意
個實數(shù)
都有
成立;
(3)求證:.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號