【題目】已知函數(shù).
(1)證明:在區(qū)間
上存在唯一零點;
(2)令,若
時
有最大值,求實數(shù)
的取值范圍.
【答案】(1)見解析(2)
【解析】
(1)對求導(dǎo)得到
,再對
求導(dǎo),得到
,根據(jù)
的正負,得到
的單調(diào)性,再由定義域求出
的正負,從而得到
的單調(diào)性,由零點存在定理,進行證明;(2)對
求導(dǎo),得到
,令
,根據(jù)(1)的結(jié)論,可得
在
上有唯一零點
,再按
和
進行分類,分別研究
的單調(diào)性,從而得到
有最大值時對
的要求,得到答案.
(1)
易知在區(qū)間
上恒成立,則
在
單調(diào)遞減
所以=0,即f(x)在
單調(diào)遞增,
又,則
在區(qū)間
必存在唯一零點
(2)
所以
令,則
由(1)知:則在
單調(diào)遞增
又,即
在
上有唯一零點
當時,由
得
,所以
在區(qū)間
單調(diào)遞增;在區(qū)間
單調(diào)遞減;此時h(x)存在最大值h(0),滿足題意;
當時,由
有兩個不同零點x=0及
,所以h(x)在區(qū)間(0,a)單調(diào)遞減;在區(qū)間
,
單調(diào)遞增;此時h(x)有極大值h(0)=2a
由h(x)有最大值,可得;,解得
,即
綜上所述:當時,h(x)在
有最大值
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機APP軟件層出不窮.現(xiàn)從使用A和B兩款訂餐軟件的商家中分別隨機抽取50個商家,對它們的“平均送達時間”進行統(tǒng)計,得到頻率分布直方圖如圖.
(1)試估計使用A款訂餐軟件的50個商家的“平均送達時間”的眾數(shù)及平均數(shù);
(2)根據(jù)以上抽樣調(diào)查數(shù)據(jù),回答以下問題:
(。榱私馊绾谓档透魃碳业乃筒蜁r間,我們先從這100家商家里選出平均送達時間不超過20分鐘的商家,然后再從中隨機挑選兩家進行跟蹤研究,求恰好所抽中的商家均為使用B款軟件的概率.
(ⅱ)如果你要從A和B兩款訂餐軟件中選擇一款訂餐,你會選擇哪款?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為
為參數(shù)),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)設(shè)點,直線
與曲線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為緩減人口老年化帶來的問題,中國政府在2016年1月1日作出全國統(tǒng)一實施全面的“二孩”政策,生“二孩”是目前中國比較流行的元素某調(diào)查機構(gòu)對某校學(xué)生做了一個是否同意父母生“二孩”抽樣調(diào)查,該調(diào)查機構(gòu)從該校隨機抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”
現(xiàn)已得知100人中同意父母生“二孩”占
,統(tǒng)計情況如表:
性別屬性 | 同意父母生“二孩” | 反對父母生“二孩” | 合計 |
男生 | 10 | ||
女生 | 30 | ||
合計 | 100 |
請補充完整上述列聯(lián)表;
根據(jù)以上資料你是否有
把握,認為是否同意父母生“二孩”與性別有關(guān)?請說明理由.
參考公式與數(shù)據(jù):,其中
k |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個盒子中分別裝有標號為1、2、3、4的四個球,現(xiàn)從甲、乙兩個盒子中各取出1個球,每個球被取出的可能性相等.
(Ⅰ)求取出的兩個球上標號為相同數(shù)字的概率;
(Ⅱ)求取出的兩個球上標號之積能被3整除的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=+
.
(1)當m=0時,求不等式f(x)≤9的解集;
(2)當m=2時,若x∈(1,4),f(x) 2x
a<0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體中,側(cè)面
是正方形,
是等腰直角三角形,點
是正方形
對角線的交點
,
且
.
(1)證明:平面
;
(2)若側(cè)面與底面
垂直,求五面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國“一帶一路”戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住“一帶一路”帶來的機遇, 決定開發(fā)生產(chǎn)一款大型電子設(shè)備, 生產(chǎn)這種設(shè)備的年固定成本為萬元, 每生產(chǎn)
臺,需另投入成本
(萬元), 當年產(chǎn)量不足
臺時,
(萬元); 當年產(chǎn)量不小于
臺時
(萬元), 若每臺設(shè)備售價為
萬元, 通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.
(1)求年利潤 (萬元)關(guān)于年產(chǎn)量
(臺)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少臺時 ,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com