【題目】已知直線:
恒過定點(diǎn)
,圓
經(jīng)過點(diǎn)
和點(diǎn)
,且圓心在直線
上.
(1)求定點(diǎn)的坐標(biāo);
(2)求圓的方程;
(3)已知點(diǎn)為圓
直徑的一個(gè)端點(diǎn),若另一個(gè)端點(diǎn)為點(diǎn)
,問:在
軸上是否存在一點(diǎn)
,使得
為直角三角形,若存在,求出
的值,若不存在,請說明理由.
【答案】(1);(2)
;(3)
.
【解析】試題分析:(1)直線過定點(diǎn)問題,應(yīng)將直線:
的方程中含
的項(xiàng)合并,變?yōu)?/span>
,解方程組
即可求定點(diǎn)坐標(biāo);(2)方法一:設(shè)圓
的一般方程為
,其圓心為
,由條件可得關(guān)于
三元方程組,解方程組可求解;方法二:設(shè)圓的方程為標(biāo)準(zhǔn)方程。(3)圓心C為
的中點(diǎn),由中點(diǎn)坐標(biāo)公式求點(diǎn)
的坐標(biāo)。點(diǎn)M到圓心C距離大于半徑,所以點(diǎn)M在圓C外。故
或
為直角,兩鄰邊垂直,斜率乘積為-1,可求m的值。
試題解析:(1)由得,
,
令,得
,即定點(diǎn)
的坐標(biāo)為
.
(2)設(shè)圓的方程為
,
由條件得,解得
.
所以圓的方程為
.
(3)圓的標(biāo)準(zhǔn)方程為
,
,
設(shè)點(diǎn)關(guān)于圓心
的對稱點(diǎn)為
,則有
,
解得,
,故點(diǎn)
的坐標(biāo)為
.
因?yàn)?/span>在圓外,所以點(diǎn)
不能作為直角三角形的頂點(diǎn),
若點(diǎn)為直角三角形的頂點(diǎn),則有
,
,
若點(diǎn)是直角三角形的頂點(diǎn),則有
,
,
綜上, 或
.
所以,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列,滿足
,數(shù)列
滿足
,且
為等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(m,cos2x),
=(sin2x,n),設(shè)函數(shù)f(x)=
,且y=f(x)的圖象過點(diǎn)(
,
)和點(diǎn)(
,﹣2). (Ⅰ)求m,n的值;
(Ⅱ)將y=f(x)的圖象向左平移φ(0<φ<π)個(gè)單位后得到函數(shù)y=g(x)的圖象.若y=g(x)的圖象上各最高點(diǎn)到點(diǎn)(0,3)的距離的最小值為1,求y=g(x)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列{an},定義 為{an}的“優(yōu)值”,現(xiàn)在已知某數(shù)列{an}的“優(yōu)值”
,記數(shù)列{an﹣kn}的前n項(xiàng)和為Sn , 若Sn≤S5對任意的n∈N+恒成立,則實(shí)數(shù)k的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在
上的奇函數(shù),且當(dāng)
時(shí),
,則對任意
,函數(shù)
的零點(diǎn)個(gè)數(shù)至多有( )
A. 3個(gè) B. 4個(gè) C. 6個(gè) D. 9個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)遞增區(qū)間和對稱中心坐標(biāo);
(3)將f(x)的圖象向左平移 個(gè)單位,再講橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,最后將圖象向上平移1個(gè)單位,得到函數(shù)g(x)的圖象,求函數(shù)y=g(x)在
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:
恒過定點(diǎn)
,圓
經(jīng)過點(diǎn)
和點(diǎn)
,且圓心在直線
上.
(1)求定點(diǎn)的坐標(biāo);
(2)求圓的方程;
(3)已知點(diǎn)為圓
直徑的一個(gè)端點(diǎn),若另一個(gè)端點(diǎn)為點(diǎn)
,問:在
軸上是否存在一點(diǎn)
,使得
為直角三角形,若存在,求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線
:
,曲線
:
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)求曲線,
的極坐標(biāo)方程;
(Ⅱ)曲線:
(
為參數(shù),
,
)分別交
,
于
,
兩點(diǎn),當(dāng)
取何值時(shí),
取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4;坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)中,曲線
.
(Ⅰ)求直線的普通方程和曲線
的直角坐標(biāo)方程.
(Ⅱ)求曲線上的點(diǎn)到直線
的距離的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com