江蘇省南京市2009年5月份最新高考信息題(內(nèi)部資料)
一、填空題:本大題共14小題,每小題5分,共計(jì)70分.
1.已知
,則
= .
2.是純虛數(shù),則
.
3.若將一枚硬幣連續(xù)拋擲三次,則出現(xiàn)“至少一次正面向上”的概率為 .
4.函數(shù)的部分圖像如圖所示,則
.
5.若雙曲線經(jīng)過點(diǎn),且漸近線方程是
,則這條雙曲線的方程是 .
6.下右圖是一個算法的程序框圖,該算法所輸出的結(jié)果是 .
![]() |
7.已知正三棱錐主視圖如圖所示,其中
中,
,則這個正三棱錐的左視圖的面積為
.
8.從某項(xiàng)綜合能力測試中抽取100人的成績,統(tǒng)計(jì)如下表,則這100人成績的標(biāo)準(zhǔn)差為 .
分?jǐn)?shù)
5
4
3
2
1
人數(shù)
20
10
30
30
10
9.若數(shù)列滿足
(
為常數(shù)),則稱數(shù)列
為等比和數(shù)列,k稱為公比和.已知數(shù)列
是以3為公比和的等比和數(shù)列,其中
,則
.
10.動點(diǎn)在不等式組
表示的平面區(qū)域內(nèi)部及其邊界上運(yùn)動,則
的取值范圍是
.
11.已知,則
=
.
12.已知,設(shè)函數(shù)
的最大值為
,最小值為
,那么
.
13.已知P為拋物線的焦點(diǎn),過P的直線l與拋物線交與A,B兩點(diǎn),若Q在直線l上,且滿足
,則點(diǎn)Q總在定直線
上.試猜測如果P為橢圓
的左焦點(diǎn),過P的直線l與橢圓交與A,B兩點(diǎn),若Q在直線l上,且滿足
,則點(diǎn)Q總在定直線 上.
14. 曲邊梯形由曲線所圍成,過曲線
上一點(diǎn)P作切線,使得此切線從曲邊梯形上切出一個面積最大的普通梯形,這時(shí)點(diǎn)P的坐標(biāo)是____________.
二、解答題:本大題共6小題,共計(jì)90分.解答應(yīng)寫出必要的文字說明步驟.
15.(本小題滿分14分)
已知向量.
(1)若,求
的值;
(2)記,在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足
,求函數(shù)f(A)的取值范圍.
16.(本小題滿分14分)
已知關(guān)于的一元二次函數(shù)
.
(1)設(shè)集合P={1,2, 3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個數(shù)作為和
,
求函數(shù)在區(qū)間[
上是增函數(shù)的概率;
(2)設(shè)點(diǎn)(,
)是區(qū)域
內(nèi)的隨機(jī)點(diǎn),求
上是增函數(shù)的概率.
17.(本小題滿分15分)
如圖,為圓
的直徑,點(diǎn)
、
在圓
上,且
,矩形
所在的平面和圓
所在的平面互相垂直,且
,
.
(1)求證:
平面
;
(2)設(shè)的中點(diǎn)為
,求證:
平面
;
(3)設(shè)平面將幾何體
分成的兩個錐體的
體積分別為,
,求
.
18.(本小題滿分15分)在平面直角坐標(biāo)系中
,已知以
為圓心的圓與直線
:
,
恒有公共點(diǎn),且要求使圓
的面積最小.
(1)寫出圓的方程;
(2)圓與
軸相交于A、B兩點(diǎn),圓內(nèi)動點(diǎn)P使
、
、
成等比數(shù)列,求
的范圍;
(3)已知定點(diǎn)Q(,3),直線
與圓
交于M、N兩點(diǎn),試判斷
是否有最大值,若存在求出最大值,并求出此時(shí)直線
的方程,若不存在,給出理由.
19.(本小題滿分16分)
設(shè),等差數(shù)列
中
,
,記
=
,令
,數(shù)列
的前n項(xiàng)和為
.
(Ⅰ)求的通項(xiàng)公式和
;
(Ⅱ)求證:;
(Ⅲ)是否存在正整數(shù),且
,使得
成等比數(shù)列?若存在,求出
的值,若不存在,說明理由.
20.(本小題滿分16分)
已知函數(shù)定義在R上.
(Ⅰ)若可以表示為一個偶函數(shù)
與一個奇函數(shù)
之和,設(shè)
,
,求出
的解析式;
(Ⅱ)若對于
恒成立,求m的取值范圍;
(Ⅲ)若方程無實(shí)根,求m的取值范圍.
南京市5月份最新高考信息題(內(nèi)容資料)答案
一、填空題:本大題共14小題,每小題5分,共計(jì)70分.
1. 2.
3.
4.6 5.
6.
7.
8.3 9. 10.
11.
12.
13. 14.
二、解答題:本大題共6小題,共計(jì)90分.解答應(yīng)寫出必要的文字說明步驟.
15.解:(1)
∵ ∴
┉┉┉┉┉┉┉┉┉┉┉┉┉4分
┉┉┉┉7分
(2)∵(
由正弦定理得(2sinA-sinC)cosB=sinBcosC ┉┉┉┉┉┉8分
∴2sinAcosB-sinCcosB=sinBcosC ∴2sinAcosB=sin(B+C)
∵ ∴
,
∴ ∴
┉┉┉┉┉┉11分
∴
┉┉┉┉┉┉12分
又∵,∴
┉┉┉┉┉┉13分
故函數(shù)f(A)的取值范圍是.
┉┉┉┉┉┉14分
16.解:(1)∵函數(shù)的圖象的對稱軸為
要使在區(qū)間
上為增函數(shù),
當(dāng)且僅當(dāng)>0且
……………………………3分
若=1則
=-1, 若
=2則
=-1,1; 若
=3則
=-1,1; …………5分
∴事件包含基本事件的個數(shù)是1+2+2=5
∴所求事件的概率為. ……………………………7分
(2)由(Ⅰ)知當(dāng)且僅當(dāng)且
>0時(shí),
函數(shù)上為增函數(shù),
依條件可知試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?sub>
構(gòu)成所求事件的區(qū)域?yàn)槿切尾糠? 由
…11分
∴所求事件的概率為. ………………………… 14分
17.解:(1)證明:
平面
平面
,
,
平面平面
=
,
平面
,
平面
,
,
又為圓
的直徑,
,
平面
.
………5分
(2)設(shè)的中點(diǎn)為
,則
,又
,
則,
為平行四邊形,
,又
平面
,
平面
,
平面
. ……9分
(3)過點(diǎn)作
于
,
平面
平面
,
平面
,
,
………11分
平面
,
,
………14分
.
………15分
18.解:(1)因?yàn)橹本:
過定點(diǎn)T(4,3)
由題意,要使圓的面積最小, 定點(diǎn)T(4,3)在圓上,
所以圓的方程為
.
………4分
(2)A(-5,0),B(5,0),設(shè),則
……(1)
,
,
由成等比數(shù)列得,
,
即,整理得:
,即
……(2)
由(1)(2)得:,
,
……………………9分
(3)
.
………11分
由題意,得直線與圓O的一個交點(diǎn)為M(4,3),又知定點(diǎn)Q(
,3),
直線:
,
,則當(dāng)
時(shí)
有最大值32.
………14分
即有最大值為32,
此時(shí)直線的方程為
.
………15分
19.解:(Ⅰ)設(shè)數(shù)列的公差為
,由
,
.
解得,
=3 ∴
∵ ∴Sn=
=
.
(Ⅱ)
∴ ∴
(Ⅲ)由(2)知, ∴
,
∵成等比數(shù)列.
∴ 即
當(dāng)時(shí),7
,
=1,不合題意;
當(dāng)時(shí),
,
=16,符合題意;
當(dāng)時(shí),
,
無正整數(shù)解;
當(dāng)時(shí),
,
無正整數(shù)解;
當(dāng)時(shí),
,
無正整數(shù)解;
當(dāng)時(shí),
,
無正整數(shù)解;
當(dāng)時(shí),
,則
,而
,
所以,此時(shí)不存在正整數(shù)m,n,且1<m<n,使得成等比數(shù)列.
綜上,存在正整數(shù)m=2,n=16,且1<m<n,使得成等比數(shù)列.
20.解:(Ⅰ)假設(shè)①,其中
偶函數(shù),
為奇函數(shù),
則有,即
②,
由①②解得,
.
∵定義在R上,∴
,
都定義在R上.
∵,
.
∴是偶函數(shù),
是奇函數(shù),∵
,
∴,
.
由,則
,
平方得,∴
,
∴.
(Ⅱ)∵關(guān)于
單調(diào)遞增,∴
.
∴對于
恒成立,
∴對于
恒成立,
令,則
,
∵,∴
,故
在
上單調(diào)遞減,
∴,∴
為m的取值范圍.
(Ⅲ)由(1)得,
若無實(shí)根,即
①無實(shí)根,
方程①的判別式.
1°當(dāng)方程①的判別式,即
時(shí),方程①無實(shí)根.
2°當(dāng)方程①的判別式,即
時(shí),
方程①有兩個實(shí)根,
即 ②,
只要方程②無實(shí)根,故其判別式,
即得③,且
④,
∵,③恒成立,由④解得
, ∴③④同時(shí)成立得
.
綜上,m的取值范圍為.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com